Skip to main content
Log in

Time Course and Involvement of Protein Kinase C-Mediated Phosphorylation of F1/GAP-43 in Area CA3 After Mossy Fiber Stimulation

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. Protein kinase C (PKC) activity and phosphorylation of F1/growth associated protein (GAP)-43, a PKC substrate, have been proposed to play key roles in the maintenance of long-term potentiation (LTP) at the synapses of Schaffer collateral/commissural on pyramidal neurons in CA1 (Akers et al., 1986). We have studied in the involvement of PKC and PKC-dependent protein phosphorylation of F1/GAP-3 in in vitro LTP observed at the synapses of mossy fiber (MF) on CA3 pyramidal neurons of rat hippocampus by post hoc in vitro phosphorylation.

2. After LTP was induced in CA3 in either the presence or absence of D-2-amino-5-phosphonovaleric acid (AP5), an NMDA receptor antagonist, the CA3 region was dissected for in vitro phosphorylation assay. In vivo phosphorylation of F1/GAP-43 was increased in membranes at 1 and 5 min after tetanic stimulation (TS) but not at 60 min after TS.

3. The degree of phosphorylation of F1/GAP-43 in the cytosol was inversely related to that in membranes at each time point after LTP.

4. The similar biochemical changes obtained from either control slices or AP5-treated slices indicate that LTP and the underlying biochemical changes are independent of the NMDA receptor. Immunoreactivity of the phophorylated F1/GAP-43 in LTP slices was not significantly different from control, indicating that results from western blotting and post hoc in vitro phosphorylation are consistent.

5. Post hoc in vitro phosphorylation of F1/GAP-43 was PKC-mediated since phosphorylation of F1/GAP-43 was altered by the PKC activation cofactors, Ca2+, phosphatidylserine and phorbol ester.

6. Calmodulin (CaM) at >5 μM inhibited phosphorylation, consistent with the presence of CaM-binding activity at the site on F1/GAP-43 acted upon by PKC.

7. We conclude that phosphorylation of F1/GAP-43 is associated with the induction but not the maintenance phase of MF-CA3 LTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Akers, R. F., and Routtenberg, A. (1987). Calcium-promoted translocation of protein kinase C to synaptic membranes: Relation to the phosphorylation and endogenous substrate (protein 1) involved in synaptic plasticity. J. Neurosci. 7(12):3963–3976.

    Google Scholar 

  • Akers, R. F., Lovinger, D. M., Colley, P. A., Linden, D. J., and Routtenberg, A. (1986). Translocation of protein kinase C activity may mediate hippocampal long-term potentiation. Science 231:587–589.

    Google Scholar 

  • Alexander, K. A., Wakim, B. T., Doyle, G. S., Walsh, K. A., and Storm, D. R. (1988). Identification and characterization of the calmodulin-binding domain of neuromodulin, a neurospecific calmodulin-binding protein. J. Biol. Chem. 263(16):7544–7549.

    Google Scholar 

  • Chan, S. Y., Murakami, K., and Routtenberg, A. (1986). Phosphorylation and characterization of a brain kinase C substrate related to plasticity. J. Neurosci. 6(12):3618–3627.

    Google Scholar 

  • Chapman, E. R., Au, D., Alexander, K. A., Nicolson, T. A., and Storm, D. R. (1991). Characterization of the calmodulin binding domain of neuromodulin. Functional significance of serine 41 and phenylalanine 42. J. Biol. Chem. 266:207–213.

    Google Scholar 

  • De Graan, P. N. E., Dekker, L. V., Oesteicher, A. B., Van der Voorn, L., and Gispen, W. H. (1989). Determination of changes in the phosphorylation state of the neuron-specific protein kinase C substrate B-50 (GAP43) by quantitative immunoprecipitation. J. Neurochem. 52(1):17–23.

    Google Scholar 

  • Dekker, L. V., De Graan, P. N. E., Versteeg, D. H. G., Oestreicher, A. B., and Gispen, W. H. (1989b). Phosphorylation of B-50 (GAP-43) is correlated with neurotransmitter release in rat hippocampal slices. J. Neurochem. 52:24–30.

    Google Scholar 

  • Del Cerro, S., Larson, J., Oliver, M. W., and Lynch, G. (1990). Development of hippocampal long-term potentiation is reduced by recently introduced calpain inhibitors. Brain Res. 530:91–95.

    Google Scholar 

  • Gianotti, C., Nunzi, M. G., Gipsen, W. H., and Corradetti, R. (1992). Phosphorylation of the presynaptic protein B-50 (GAP-43) is increased during electrically induced long-term potentiation. Neuron 8:843–848.

    Google Scholar 

  • Han, Y., and Dokas, L. A. (1991). Okadaic acid-induced inhibition of B-50 dephosphorylation by presynaptic membrane-associated protein phosphatases. J. Neurochem. 57(4):1325–1331.

    Google Scholar 

  • Harris, E. W., and Cotman, C. W. (1986). Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl-D-aspartate antagonists. Neurosci. Lett. 70:132–137.

    Google Scholar 

  • Huang, F. L., Yoshida, Y., Nakabayashi, H., Young, W. S., III, and Huang, K. P. (1988). Immunocytochemical localization of protein kinase C isozymes in rat brain. J. Neurosci. 8(12):4734–4744.

    Google Scholar 

  • Johnston, D., Williams, S., Jaffe, D., and Gray, R. (1992). NMDA receptor-independent long-term potentiation. Annu. Rev. Phsyiol. 54:489–505.

    Google Scholar 

  • Jork, R., De Graan, P. N. E., van Dongen, C. J., Zwiers, H., Matthies, H., and Gispen, W. H. (1984). Dopamine-induced changes in protein phosphorylation and polyphosphoinositide metabolism in rat hippocampus. Brain Res. 291:73–81.

    Google Scholar 

  • Klann, E., Chen, S.-J., and Sweatt, J. D. (1993). Mechanism of protein kinase C activation during induction and maintenance of long-term potentiation probed using a selective peptide substrate. Proc. Natl. Acad. Sci. USA 90:8337–8341.

    Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the preassembly of the head of bacteriophage T4. Nature 227:680–685.

    Google Scholar 

  • Leahy, J. C., Luo, Y., Kent, C. S., Meiri, K. F., and Vallano, M. L. (1993). Demonstration of presynaptic protein kinase C activation following long-term potentiation in rat hippocampal slices. Neuroscience 52(3):563–574.

    Google Scholar 

  • Liu, Y., and Storm, D. R. (1989). Dephosphorylation of neuromodulin by calcineurin. J. Biol. Chem. 264 (22) :12800–12804.

    Google Scholar 

  • Liu, Y., and Storm, D. R. (1990). Regulation of free calmodulin levels by neuromodulin: neuron growth and regeneration. Trends Pharmacol. Sci. 11:107–111.

    Google Scholar 

  • Malinow, R., Madison, D. V., and Tsien, R. W. (1988). Persistent protein kinase activity underlying long-term potentiation. Nature 335:820–824.

    Google Scholar 

  • Malinow, R., Schulman, H., and Tsien, R. W. (1989). Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245:862–866.

    Google Scholar 

  • Meberg, P. J., and Routtenberg, A. (1991). Selective expression of protein F1/(GAP-43) mRNA in pyramidal but not granule cells of the hippocampus. Neuroscience 45:721–733.

    Google Scholar 

  • Meiri, K. F., and Gordon-Weeks, P. R. (1990). GAP-43 in growth cones is associated with areas of membrane that are tightly bound to substrate and is a component of a membrane skeleton subcellular fraction. J. Neurosci. 10(1):256–266.

    Google Scholar 

  • Meiri, K. F., Bickerstaff, L. E., and Schwob, J. E. (1991). Monoclonal antibodies show that kinase C phosphorylation of GAP-43 during axogenesis is both spatially and temporally restricted in vivo. J. Cell Biol. 112:991–1005.

    Google Scholar 

  • Monaghan, D. T., and Cotman, C. W. (1985). Distribution of N-methyl-D-aspartate-sensitive L-[3H] glutamate-binding sites in rat brain. J. Neurosci. 5:2909–2919.

    Google Scholar 

  • Nielander, H. B., Schrama, L. H., van Rozen, A. J., Kasperaitis, M., Oestreicher, A. B., Gispen, W. H., and Schotman, P. (1990). Mutation of serine 41 in neuron-specific protein B-50 (GAP-43) prohibits phosphorylation by protein kinase C. J. Neurochem. 55:1442–1445.

    Google Scholar 

  • Oestreicher, A. B., and Gispen, W. H. (1986). Comparison of the immunocytochemical distribution of the phosphoprotein B-50 in the cerebellum and hippocampus of immature and adult rat brain. Brain Res. 375:267–279.

    Google Scholar 

  • Papavassiliou, A. G. (1994). Preservation of protein phosphoryl groups in immunoprecipitation assays. J. Immunol. Methods 170:67–73.

    Google Scholar 

  • Regehr, W. G., and Tank, D. W. (1991). The maintenance of LTP at hippocampal mossy fiber synapses is independent of sustained presynaptic calcium. Neuron 7:451–459.

    Google Scholar 

  • Sacktor, T. C., Osten, P., Valsamis, H., Jiang, X., Naik, M. U., and Sublette, E. (1993). Persistent activation of the ζ isoform of protein kinase C in the maintenance of long-term potentiation. Proc. Natl. Acad. Sci. USA 90:8342–8346.

    Google Scholar 

  • Sheu, F.-S., Marais, R. M., Parker, P. J., Bazan, N. G., and Routtenberg, A. (1990). Neuron-specific protein F1/GAP-43 shows substrate specificity for the beta subtype of protein kinase C. Biochem. Biophys. Res. Commun. 171(3):1236–1243.

    Google Scholar 

  • Son, H., and Carpenter, D. O. (1996a). Protein kinase C activation is necessary but not sufficient for induction of LTP at the synapse of mossy fiber-CA3 in the rat hippocampus. Neuroscience 72:1–13.

    Google Scholar 

  • Son, H., and Carpenter, D. O. (1996b). Interactions among paired-pulse facilitation and post-tetanic and long-term potentiation in the mossy fiber-CA3 pathway in rat hippocampus. Synapse 23:302–311.

    Google Scholar 

  • Son, H., Madelian, V., and Carpenter, D. O. (1997). The translocation and involvement of protein kinase C in mossy fiber-CA3 long-term potentiation in hippocampus of the rat brain. Brain Res. (in press).

  • Suzuki, T., Okumura-Noji, K., Ogura, A., Tanaka, R., Nakamura, K., and Kudo, Y. (1992). Calpain may produce a Ca2+-independent form of kinase C in long-term potentiation. Biochem. Biophys. Res. Commun. 189(3):1515–1520.

    Google Scholar 

  • Terrian, D. M., Ways, D. K., and Gannon, R. L., and Zetts, D. A. (1993). Transduction of a protein kinase C-generated signal into the long-lasting facilitation of glutamate release. Hippocampus 3(2):205–220.

    Google Scholar 

  • Yao, G. L., Kiyama, H., and Tohyama, M. (1993). Distribution of GAP-43 (B50/F1) mRNA in the adult rat brain by in situ hybridization using an alkaline phosphatase labeled probe. Mol. Brain Res. 18:1–16.

    Google Scholar 

  • Wood, J. G., Girard, P. R., Mazzei, G. J., and Kuo, J. F. (1986). Immunocytochemical localization of protein kinase C in identified neuronal compartments of rat brain. J. Neurosci. 6(9):2571–2577.

    Google Scholar 

  • Zalutsky, R. A., and Nicoll, R. A. (1991). Comparison of two forms of long-term potentiation in single hippocampal neurons. Science 248:1619–1624.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Son, H., Davis, P.J. & Carpenter, D.O. Time Course and Involvement of Protein Kinase C-Mediated Phosphorylation of F1/GAP-43 in Area CA3 After Mossy Fiber Stimulation. Cell Mol Neurobiol 17, 171–194 (1997). https://doi.org/10.1023/A:1026361711588

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026361711588

Navigation