Skip to main content
Log in

Magnetic Resonance Imaging of Hydrodynamic Dispersion in a Saturated Porous Medium

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

By using nuclear magnetic resonance imaging (NMRI) we have been able to analyse dispersion at the microscopic scale during steady-state flow through water-saturated glass beads. The flow rate through the porous medium was chosen high enough in order to neglect the influence of molecular diffusion on dispersion. Velocity statistics were measured, by NMRI, within slices of increasing thickness perpendicular to the direction of flow. It took more than two bead diameters before a representative elementary volume (REV) for the mean velocity was reached. This was in a region in the middle of the column that was not influenced by the boundary conditions. There the velocity variance decreased exponentially as a function of the slice thickness, due we consider to the formation of an interconnecting streamline network. The exponential decrease in the velocity variance reflects the transition from a local pattern of stochastic–convective flow to a convective–dispersion regime at the scale of the REV. We found that the point-like preferential influx and efflux boundary condition increased velocity variances and thus enhanced longitudinal hydrodynamic dispersion. Using the transverse correlation length of longitudinal velocity variance, we derived a mean transverse dispersivity that agreed well with Saffman’s (1959) model. So we have been able to provide for the first time a direct observation verification of a part of Saffman’s (1959) conjectures. By NMRI we observed this value to be independent of the observation scale of the slice thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitcheson, J. and Brown, J. A. C.: 1976, The Lognormal Distribution, Cambridge University Press, Cambridge.

    Google Scholar 

  • Amin, M. H. G., Chorley, R. J., Richards, K. S., Bache, B. W., Hall, L. D. and Carpenter, T. A.: 1993, Spatial and Temporal Mapping of Water in Soil by Magnetic Resonance Imaging, Hydrol. Processes 7, 279–286.

    Google Scholar 

  • Bear, J.: 1972, Dynamics of Fluids in Porous Media, Elsevier, New York.

    Google Scholar 

  • Beven, K. and Germann, P.: 1982, Macropores and water flow in soils, Water Resour. Res. 18, 1311–1325.

    Google Scholar 

  • Blackwell, R. J.: 1963, Laboratory studies of microscopic dispersion phenomena, in: Miscible Processes, Vol. 8 Soc. of Petroleum Engineers of AIME, pp. 69–76.

    Google Scholar 

  • Brusseau, M. L.: 1993, The influence of solute size, pore water velocity, and intraparticle porosity on solute dispersion and transport in soil, Water Resour. Res. 29, 1071–1080.

    Google Scholar 

  • Callaghan, P. T.: 1991, Principles of Nuclear Magnetic Resonance Microscopy, Clarendon Press, Oxford.

    Google Scholar 

  • Callaghan, P. T. and Xia, Y.: 1991, Velocity and diffusion imaging in dynamic NMR microscopy, J. Magn. Reson. 91, 326–352.

    Google Scholar 

  • Chen, Q., Kinzelbach, W. and Oswald, S.: 2002, Nuclear magnetic resonance imaging for studies of flow and transport in porous media, J. Env. Qual. 31, 477–486.

    Google Scholar 

  • Corapcioglu, M. Y. and Fedirchuk, P.: 1999, Glass bead micromodel study of solute transport. J. Cont. Hydrol. 36, 209–230.

    Google Scholar 

  • Dagan, G.: 1989, Flow and Transport in Porous Formations, Springer, Berlin.

    Google Scholar 

  • Deurer, M., Vogeler, I. and Khrapitchev, A.: 2002, Imaging of water flow in porous media by MRI microscopy, J. Env. Qual. 31, 487–493.

    Google Scholar 

  • Dronfield, D. G. and Silliman, S. E.: 1993, Velocity dependence of dispersion for transport through a single fracture of variable roughness, Water Resour. Res. 29, 3477–3483.

    Google Scholar 

  • Dullien, F. A. L.: 1992, Porous Media. Fluid Transport and Pore Structure, 2nd edn, Academic Press, New york.

    Google Scholar 

  • Eccles, C. D., Clark, C. J., Codd, S. L. and Dykstra, R.: 1998, Construction of an MRI system for horticultural and material science research, In: Proceedings of the 5th Electronics NZ Conference.

  • Farrar, T. C.: 1987, An Introduction to Pulse NMR Spectroscopy, Farragut Press, Chicago.

    Google Scholar 

  • Freeman, R.: 1988, A Handbook of Nuclear Magnetic Resonance, Longman, New York.

    Google Scholar 

  • Freeze, R. A. and Cherry, J. A.: 1979, Groundwater, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Frissel, M. J. and Poelstra, P.: 1967, Chromatographic transport through soils. I. Theoretical evaluations, Plant and Soil 26, 285–302.

    Google Scholar 

  • Gadian, D. G.: 1995, NMR and Its Application to Living Systems, Oxford University Press, Oxford.

    Google Scholar 

  • Goodknight, R. C., Klikoff, W. A. and Fatt, I.: 1960, Non-steady-state fluid flow and diffusion in porous media containing dead-end pore volume, J. Phys. Chem. 64, 1162–1168.

    Google Scholar 

  • Greiner, A., Schreiber, W., Brix, G. and Kinzelbach, W.: 1997, Magnetic resonance imaging of paramagnetic tracers in porous media: quantification of flow and transport parameters, Water Resour. Res. 33, 1461–1473.

    Google Scholar 

  • Hall, L. D., Amin, M. H. G., Dougherty, E., Sanda, M., Votrubova, J., Richards, K. S., Chorley, R. J. and Cislerova, M.: 1997, MR properties of water in saturated soils and resulting loss of MRI signal in water content detection at 2 tesla, Geoderma 80, 431–448.

    Google Scholar 

  • Herrmann, K. H., Pohlmeier, A., Wiese, S., Shah, N. J., Nitzsche, O. and Vereecken, H.: 2002, Three-dimensional nickel ion transport through porous media using magnetic resonance imaging, J. Env. Qual. 31, 506–514.

    Google Scholar 

  • Horvath, C. and Lin, H.: 1976, Movement and band spreading of unsorbed solutes in liquid chromatography, J. Chromatography 126, 401–420.

    Google Scholar 

  • Jensen, J. R.: 1983, Chloride dispersion in packed columns during saturated steady flow, J. Soil Sci. 34, 249–262.

    Google Scholar 

  • Journel, A. G. and Huijbregts, C. J.: 1978, Mining Geostatistics, Academic Press, New York.

    Google Scholar 

  • Jury, W. A.: 1982, Simulation of solute transport with a transfer function model, Water Resour. Res. 18, 363–368.

    Google Scholar 

  • Jury, W. A. and Roth, K.: 1990, Transfer Functions and Solute Movement through Soil: Theory and Applications, Birkhäuser, Basel.

    Google Scholar 

  • Jury, W. A., Focht, D. D., and Farmer, W. J.: 1987, Evaluation of pesticide ground water pollution potential from standard indices of soil-chemical adsorption and biodegradation, J. Env. Qual. 16, 422–428.

    Google Scholar 

  • Klotz, D., Seiler, K. P., Moser, H. and Neumaier, F.: 1980, Dispersivity and velocity relationships from laboratory and field experiments, J. Hydrol. 45, 169–184.

    Google Scholar 

  • Koch, D. L. and Brady, J. F.: 1987, A non-local description of advection–diffusion with application to dispersion in porous media, J. Fluid Mech. 180, 387–403.

    Google Scholar 

  • Kung, K.-J. S.: 1990a, Preferential flow in a sandy vadosze zone. 1. Field Observation, Geoderma 46, 51–58.

    Google Scholar 

  • Kung, K.-J. S.: 1990b, Preferential flow in a sandy vadosze zone: 2. Mechanism and Implications, Geoderma 46, 59–71.

    Google Scholar 

  • Kutsovsky, Y. E., Alvarado, V., Davis, H. T., Scriven, L. E. and Hammer, B. E.: 1996, Dispersion of paramagnetic tracers in bead packs by T 1 mapping: experiments and simulations, Magn. Reson. Im. 14(7/8), 833–839.

    Google Scholar 

  • List, E. J. and Brooks, N. H.: 1967, Lateral dispersion in saturated porous media, J. Geophys. Res. 72, 2531–2541.

    Google Scholar 

  • Lumley, J. L. and Panofsky, A.: 1964, The Structure of Atmospheric Turbulence, Wiley, New York.

    Google Scholar 

  • Ma, L. and Selim, H. M.: 1996, Solute transport in soils under conditions of variable flow velocities, Water Resour. Res. 32, 3277–3283.

    Google Scholar 

  • Maier, R. S., Kroll, D. M., Kutsovsky, Y. E., Davis, H. T. and Bernard, R. S.: 1998, Simulation of flow through bead packs using the lattice Boltzmann method, Phys. Fluids 10, 60–74.

    Google Scholar 

  • Mansfield, P. and Issa, B.: 1994, Studies of fluid transport in porous rocks by echo-planar MRI, Magn. Reson. Im. 12(2), 275–278.

    Google Scholar 

  • Mansfield, P. and Issa, B.: 1996, Fluid transport in porous rocks. I. EPI studies and a stochastic model of flow, J. Magn. Reson. A 122, 137–148.

    Google Scholar 

  • Neumann, S. P., Feddes, R. A. and Bresler, E.: 1974, Finite element simulation of flow in saturated–unsaturated soils considering water uptake by plants, Third Annual Report, Project No. A10-SWC-77, Hydraulic Engineering Lab., Technion, Haifa.

    Google Scholar 

  • Perkins, T. K. and Johnston, O. C.: 1963, A review of diffusion and dispersion in porous media, In: Miscible Processes, Vol. 8., Soc. of Petroleum Engineers of AIME, pp. 77–91.

    Google Scholar 

  • Pfannkuch, H. O.: 1963, Contribution a l'etude des deplacements de fluides miscible dans un milieu poreux, Revue de l'Institute Francais du Petrole 18, 215–270.

    Google Scholar 

  • Pope, J.M. and Yao, S.: 1993, Quantitative NMR imaging of flow, Concepts Magn. Reso. 5, 281–302.

    Google Scholar 

  • Price, W. S.: 1998, NMR imaging, Annual Reports on NMR Spectroscopy 35, 281–302.

    Google Scholar 

  • Ritsema, C. J., Dekker, L. W., Hendrickx, J. M. H. and Hamminga, W.: 1993, Preferential flow mechanism in a water repellent sandy soil, Water Resour. Res. 29, 2183–2193.

    Google Scholar 

  • Roth, K.: 1995, Steady state flow in an unsaturated, two-dimensional, macroscopically homogeneous, Miller-similar medium, Water Resour. Res. 31, 2127–2140.

    Google Scholar 

  • Roth, K.: 1996, Lecture Notes in Soil Physics, Version 3.2, Institute of Soil Science, University of Hohenheim.

  • Saffman, P. G.: 1959, A theory of dispersion in a porous medium, J. Fluid Mech. 3, 321–349.

    Google Scholar 

  • Saffman, P. G.: 1960, Dispersion due to molecular diffusion and macroscopic mixing in flow through a network of capillaries, J. Fluid Mech. 2, 194–208.

    Google Scholar 

  • Scheidegger, A. E.: 1972, The Physics of Flow through Porous Media, 3rd edn, University of Toronto Press, Toronto, Ont., Canada.

    Google Scholar 

  • Sederman, A. J., Johns, M. L., Alexander, P. and Gladden, L. F.: 1998, Visualisation of structure and flow in packed beds, Magn. Reson. Im. 16, 497–500.

    Google Scholar 

  • Seymour, J. D. and Callaghan, P. T.: 1997, Generalized approach to NMR analysis of flow and dispersion in porous media, AICHE J. 43, 2096–2111.

    Google Scholar 

  • Simmons, C. S.: 1982, A stochastic–convective transport representation of dispersion in one dimensional porous media systems, Water Resour. Res. 18, 1193–1214.

    Google Scholar 

  • Sposito, G., Jury, W. A. and Gupta, V.: 1986, Fundamental problems in the stochastic convection– dispersion model of solute transport in aquifers and field soils, Water Resour. Res. 22, 77–88.

    Google Scholar 

  • van Genuchten, M. T. and Wierenga, P. J.: 1976, Mass transfer studies in sorbing porous media. I. Analytical solutions, Soil Sci. Soc. Am. J. 40, 473–480.

    Google Scholar 

  • Wang, Z., Feyen, J. and Ritsema, C. J.: 1998, Susceptibility and predictability of conditions for preferential flow, Water Resour. Res. 34, 2169–2182.

    Google Scholar 

  • Whitaker, S.: 1967, Diffusion and dispersion in porous media, J. Am. Inst. Chem. Eng. 3, 420–427.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deurer, M., Vogeler, I., Clothier, B.E. et al. Magnetic Resonance Imaging of Hydrodynamic Dispersion in a Saturated Porous Medium. Transport in Porous Media 54, 145–166 (2004). https://doi.org/10.1023/A:1026358431442

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026358431442

Navigation