Skip to main content
Log in

A Role for Fibroblast Growth Factor Signaling in the Lobuloalveolar Development of the Mammary Gland

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The inappropriate expression of growth factors, or activating mutations of their receptors, have been implicated as causative factors in mouse and human mammary cancer. For example, it has been known for some time that three members of the fibroblast growth factor (FGF)3 family behave like oncogenes in virally induced mammary cancer of mice. In normal circumstances, signaling via FGF receptors is known to mediate growth, differentiation, and patterning, during embryogenesis and fetal development. A powerful approach to dissecting the roles for these signaling pathways is to determine the developmental consequences of abrogating their function in transgenic mice. In this review, we describe the use of dominant negative FGF receptors to evaluate the contribution of specific FGF signals in normal mammary gland development. These studies have revealed that normal lobuloalveolar development requires FGF signaling to the mammary epithelium, a function that is presumably usurped by MMTV in mouse mammary tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Medina, (1996). The mammary gland: A unique organ for the study of development and tumorigenesis. J. Mam. Gland Biol. Neoplasia 1:5–19.

    Google Scholar 

  2. G. Cunha and Y. Hom (1996). Role of mesenchymal-epithelial interactions in mammary gland development. J. Mam. Gland Biol. Neoplasia 1:21–35.

    Google Scholar 

  3. C. Daniel and G. Silberstein (1987). Postnatal development of the rodent mammary gland., In M. Neville and C. Daniel (eds.). The Mammary Gland: Regulation, and Function., Plenum Press, New York, pp. 3–36.

    Google Scholar 

  4. W. Imagawa J. Yang, R. Guzman, and S. Nandi (1994). Control of mammary gland development, In E. Knobil and J. Neill (eds.), The Physiology of Reproduction, Raven Press, New York, pp. 1033–1065.

    Google Scholar 

  5. N. Hynes (1996). ErbB2 activation and signal transduction in normal and malignant mammary cells. J. Mam. Biol. Neoplasia 1:199–206.

    Google Scholar 

  6. E. Peles and Y. Yarden (1993). Neu and its ligands: from an oncogene to neural factors. Bioessays 15:815–824.

    PubMed  Google Scholar 

  7. C. A. MacArthur, D. B. Shankar, and G. M. Shackleford (1995). FGF-8, activated by proviral insertion, cooperates with the wnt-1 transgene in murine mammary tumorigenesis. J. Virol. 69:2501–2507.

    PubMed  Google Scholar 

  8. C. Dickson, R. Smith, S. Brookes, and G. Peters (1984). Tumorigenesis by mouse mammary tumor virus: proviral activation of a cellular gene in the common integration region int-2. Cell 37:529–536.

    PubMed  Google Scholar 

  9. D. Gallahan, C. Kozak, and R. Callahan (1987). A new common integration region (int-3) for mouse mammary tumor virus on mouse chromosome 17. J. Virol. 61:218–220.

    PubMed  Google Scholar 

  10. H. Roelink, E. Wagenaar, S. Lopes da Silva, and R. Nusse (1990). Wnt-3, a gene activated by proviral insertion in mouse mammary tumors, is homologous to int-1/Wnt-1 and is normally expressed in mouse embryos and adult brain. Proc. Natl. Acad. Sci. U.S.A. 87:4519–4523.

    PubMed  Google Scholar 

  11. R. Nusse, A. van Ooyen, D. Cox, Y. K. T. Fung, and H. Varmus (1984). Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307:131–136.

    PubMed  Google Scholar 

  12. G. Peters, S. Brookes R. Smith, M. Placzek, and C. Dickson (1989). The mouse homolog of the hst/k-FGF gene is adjacent to int-2 and activated by proviral insertion in some virally induced mammary tumors. Proc. Natl. Acad. Sci. U.S.A. 86:5678–5682.

    PubMed  Google Scholar 

  13. G. Peters (1991). Inappropriate expression of growth factor genes in tumors induced by mouse mammary tumor virus. Sem. Virol. 2:319–328.

    Google Scholar 

  14. T. P. Yamaguchi and J. Rossant (1995). Fibroblast growth-factors in mammalian development. Curr. Opin. Genet. Devel. 5:485–491.

    Google Scholar 

  15. R. Nusse and H. E. Varmus (1992). Wnt genes. Cell 69:1073–1087.

    PubMed  Google Scholar 

  16. B. Gavin and A. McMahon (1992). Differential regulation of the Wnt gene family during pregnancy and lactation suggests a role in postnatal development of the mammary gland. Mol. Cell. Biol. 12:2418–2423.

    PubMed  Google Scholar 

  17. L. Bouchard, L. Lamarre, P. Tremblay, and P. Jolicoeur (1989). Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell 57:931–936.

    PubMed  Google Scholar 

  18. W. Muller, E. Sinn, P. Pattengale, R. Wallace, and P. Leder (1988). Single step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54:105–115.

    PubMed  Google Scholar 

  19. A. S. Tsukamoto, R. Grosschedl, R. C. Guzman, T. Parslow, and H. E. Varmus (1988). Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55:619–625.

    PubMed  Google Scholar 

  20. W. J. Muller, F. S. Lee, C. Dickson, G. Peters, P. Pattengale, and P. Leder (1990). The int-2 gene product acts as an epithelial growth factor in transgenic mice. EMBO J. 9:907–913.

    PubMed  Google Scholar 

  21. D. M. Ornitz, R. D. Cardiff, A. Kuo, and P. Leder (1992). Int-2, an autocrine and/or ultra-short-range effector in transgenic mammary tissue transplants. J. Natl. Cancer Inst. 84:887–892.

    PubMed  Google Scholar 

  22. G. Stamp, V. Fantl, R. Poulsom, S. Jamieson, R. Smith, G. Peters, and C. Dickson (1992). Nonuniform expression of a mouse mammary tumor virus-driven int-2/Fgf-3 transgene in pregnancy-responsive breast tumors. Cell Growth Diff. 3:929–938.

    PubMed  Google Scholar 

  23. D. Kitsberg, and P. Leder (1996). Keratinocyte growth-factor induces mammary and prostatic hyperplasia and mammary adenocarcinoma in transgenic mice. Oncogene 13:2507–2515.

    PubMed  Google Scholar 

  24. G. Silberstein and C. Daniel (1987). Regulation of mammary growth and function by transforming growth factor-beta. Science 32:145–151.

    Google Scholar 

  25. Y. Yanmin, E. Spitzer, D. Meyer, M. Sachs, C. Niemann, G. Hartmann, K. Weidner, C. Birchmeier, and W. Birchmeier (1995). Sequential requirement of hepatocyte growth factor and neuregulin in the morphogenesis and differentiation of the mammary gland. J. Cell. Biol. 131:215–226.

    PubMed  Google Scholar 

  26. C. Basilico, D. Moscatelli (1992). The FGF family of growth-factors and oncogenes. Adv. Cancer Res. 59:115–165.

    PubMed  Google Scholar 

  27. W. H. Burgess and T. Maciag (1989). The heparin binding (fibroblast) growth factor family proteins. Ann. Rev. Biochem. 58:575–606.

    PubMed  Google Scholar 

  28. I. Thesleff, A. Vaahtokari, and A. M. Partanen (1995). Regulation of organogenesis. Common molecular mechanisms regulating the development of teeth and other organs. Int. J. Devel. Biol. 39:35–50.

    Google Scholar 

  29. A. O. M. Wilkie, G. M. Morrisskay, E. Y. Jones, and J. K. Heath (1995). Functions of fibroblast growth-factors and their receptors. Curr. Biol. 5:500–507.

    PubMed  Google Scholar 

  30. M. Muenke, and U. Schell (1995). Fibroblast-growth-factor receptor mutations in human skeletal disorders. Trends Genet. 11:308–313.

    PubMed  Google Scholar 

  31. M. Jaye, J. Schlessinger, and C. Dionne (1992). Fibroblast growth factor receptor tyrosine kinases: molecular analysis and signal transduction. Biochem. Biophys. Acta 1135:185–199.

    PubMed  Google Scholar 

  32. D. Johnson and L. Williams (1993). Structural and functional diversity in the FGF receptor multigene family. Adv. Cancer Res. 60:1–41.

    PubMed  Google Scholar 

  33. D. M. Ornitz, and P. Leder (1992). Ligand specificity and heparin dependence of fibroblast growth-factor receptor-1 and receptor-3. J. Biol. Chem. 267:16305–16311.

    PubMed  Google Scholar 

  34. M. Klagsbrun and A. Baird, (1991). A dual receptor system is required for basic fibroblast growth factor activity. Cell 67:229–231.

    PubMed  Google Scholar 

  35. S. Coleman-Krnacik, and J. M. Rosen (1994). Differential temporal and spatial gene-expression of fibroblast growth-factor family members during mouse mammary-gland development. Mol. Endocrinol. 8:218–229.

    PubMed  Google Scholar 

  36. M. Mathieu, E. Chatelain, D. Ornitz, J. Bresnick, I. Mason, P. Kiefer, and C. Dickson (1995). Receptor-binding and mitogenic properties of mouse fibroblast-growth-factor-3—modulation of response by heparin. J. Biol. Chem. 270:24197–24203.

    PubMed  Google Scholar 

  37. S. L. Mansour, J. M. Goddard, and M. R. Capecchi (1993). Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear. Development 117:13–28.

    PubMed  Google Scholar 

  38. L. Guo, L. Degenstein, and E. Fuchs (1996). Keratinocyte growth factor is required for hair development but not for wound healing. Genes Devel. 10:165–175.

    PubMed  Google Scholar 

  39. J. M. Hebert, T. Rosenquist, J. Gotz, and G. R. Martin (1994). FGF5 as a regulator of the hair-growth cycle—evidence from targeted and spontaneous mutations. Cell 78:1017–1025.

    PubMed  Google Scholar 

  40. C. Deng, B. A. Wynshaw, F. Zhou, A. Kuo, and P. Leder (1996). Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84:911–921.

    PubMed  Google Scholar 

  41. J. S. Colvin, B. A. Bohne, G. W. Harding, D. G. McEwen, and D. M. Ornitz (1996). Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nature Genet. 12:390–397.

    PubMed  Google Scholar 

  42. B. Feldman, W. Poueymirou, V. E. Papaioannou, T. M. Dechiara, and M. Goldfarb (1995). Requirement of FGF-4 for postimplantation mouse development. Science 267:246–249.

    PubMed  Google Scholar 

  43. T. P. Yamaguchi, K. Harpal, M. Henkemeyer, and J. Rossant (1994). FGFR-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Devel. 8:3032–3044.

    PubMed  Google Scholar 

  44. C. X. Deng, A. Wynshawboris, M. M. Shen C. Daugherity, D. M. Ornitz, and P. Leder (1994). Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes Devel. 8:3045–3057.

    PubMed  Google Scholar 

  45. S. Werner, W. Weinberg, X. Liao, K. Peters, M. Blessing, S. Yuspa, R. Weiner, and L. Williams (1993). Targeted expression of a dominant-negative FGF receptor mutant in the epidermis of transgenic mice reveals a role of FGF in keratinocyte organization and differentiation. EMBO J. 12:2635–2643.

    PubMed  Google Scholar 

  46. S. Werner, H. Smola, X. Liao, M. Longaker, T. Krieg, P. Hofschneider, and L. Williams (1994). The function of KGF in morphogenesis of epithelium and reepithelialization of wounds. Science 266:819–822.

    PubMed  Google Scholar 

  47. K. Peters, S. Werner, X. Liao, S. Wert, J. Whitsett, and L. Williams (1994). Targeted expression of a dominant negative FGF receptor blocks branching morphogenesis and epithelial differentiation of the mouse lung. EMBO J. 13:3296–3301.

    PubMed  Google Scholar 

  48. O. Kashles, Y. Yarden, A. Ullrich, and J. Schlessinger (1991). A dominant negative mutation suppresses the function of normal epidermal growth factor receptors by heterodimerization. Mol. Cell. Biol. 11:1454–1453.

    PubMed  Google Scholar 

  49. H. Ueno, M. Gunn, K. Dell, A. Tseng, and L. Williams (1992). A truncated form of fibroblast growth-factor receptor-1 inhibits signal transduction by multiple types of fibroblast growth-factor receptor. J. Biol. Chem. 267:1470–1476.

    PubMed  Google Scholar 

  50. D. Jackson, J. Bresnick, I. Rosewell, T. Crafton, R. Poulson, G. Stamp, and C. Dickson (1997). Fibroblast growth factor signaling has a role in lobuloalveolar development of the mammary gland. J. Cell Sci. 110:1261–1268.

    PubMed  Google Scholar 

  51. T. Ulich, E. Yi, R. Cardiff, S. Yin, N. Bikhazi, R. Biltz, C. Morris, and G. Pierce (1994). Keratinocyte growth factor is a growth factor for mammary epithelium in vivo. Am. J. Pathol. 144:862–868.

    PubMed  Google Scholar 

  52. I. Mason, F. Fuller-Pace, R. Smith, and C. Dickson (1994). FGF-7 (keratinocyte growth factor) expression during mouse development suggests roles in myogenesis, forebrain regionalisation and epithelial interactions. Mech. Devel. 45:15–30.

    Google Scholar 

  53. M. Yamasaki, A. Miyake, S. Tagashira, and N. Itoh (1996). Structure and expression of the rat mRNA encoding a novel member of the fibroblast growth factor family. J. Biol. Chem. 271:15918–15921.

    PubMed  Google Scholar 

  54. D. Ornitz, J. Xu, J. Colvin, D. McEwen, C. MacArthur, F. Coulier, G. Gao, and M. Golfarb (1996). Receptor specificity of the fibroblast growth-factor family. J. Biol. Chem. 271:15292–15297.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clive Dickson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, D., Bresnick, J. & Dickson, C. A Role for Fibroblast Growth Factor Signaling in the Lobuloalveolar Development of the Mammary Gland. J Mammary Gland Biol Neoplasia 2, 385–392 (1997). https://doi.org/10.1023/A:1026351414004

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026351414004

Navigation