Skip to main content
Log in

Classification of the Environment of Protein Residues

  • Published:
Journal of Protein Chemistry Aims and scope Submit manuscript

Abstract

We have studied the classification of the environment of residues within protein structures. Eisenberg's original idea created environmental categories to discriminate between similar residues [Bowie et al., Science (1991), 253, 164–170]. These environments grouped residues based upon their buried surface area, polarity of the surrounding environment, and secondary structure element in which the residue is found. However, Eisenberg's original categories led to incomplete discrimination between residues that only partially substitute for each other. We have expanded on Eisenberg's original idea of environmental categories, by both considering additional contacts in the calculation of the solvent-accessible molecular surface area and by subdividing the environmental plot into regions based upon its theoretical features. Our alternative surface area calculations were used in conjunction with the polarity of the environment of the residue to define a new set of environmental categories. These new categories were able to discriminate between residues such as threonine, valine, and aspartic acid while reflecting the propensity of these residues to substitute for each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Altschul, S. F., Carroll, R. J., and Lipman, D. J. (1989). Weights for data related by a tree, J. Mol. Biol. 207, 647–653.

    Article  CAS  PubMed  Google Scholar 

  • Bowie, J. U., and Eisenberg, D. (1993). Inverted protein structure prediction, Curr. Opin. Struct. Biol. 3, 437–444.

    Article  CAS  Google Scholar 

  • Bowie, J. U., and Eisenberg, D. (1994). An evolutionary approach to folding small α-helical proteins that uses sequence information and an empirical guiding fitness function, Proc. Natl. Acad. Sci. USA 91, 4436–4440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowie, J. U., Reidhaar-Olson, J. F., Lim, W. A., and Sauer, R. T. (1990). Deciphering the message in protein sequences: Tolerance to amino acid substitutions, Science 247, 1306–1310.

    Article  CAS  PubMed  Google Scholar 

  • Bowie, J. U., Lüthy, R., and Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure, Science 253, 164–170.

    Article  CAS  PubMed  Google Scholar 

  • Bowie, J. U., Lüthy, R., and Eisenberg, D. (1995). Three-dimensional profiles: Assessing the compatibility of an amino acid sequence with a three-dimensional structure, in Tracing Biological Evolution in Protein and Gene Structures (Go, M., and Schimmel, P., eds.), Elsevier Science, pp. 297–309.

  • Bryant, S. H., and Amzel, L. M. (1987). Correctly folded proteins make twice as many hydrophobic contacts, Int. J. Peptide Res. 29, 46–52.

    Article  CAS  Google Scholar 

  • Collins, J. F., and Coulson, F. W. (1990). Significance of protein sequence similarities, Meth. Enzymol. 183, 474–487.

    Article  CAS  Google Scholar 

  • Connolly, M. L. (1983). Analytical molecular surface calculation, J. Appl. Crystallogr., 16, 548–558.

    Article  CAS  Google Scholar 

  • Connolly, M. L. (1985a). J. Am. Chem. Soc. 107, 1118–1124.

    Article  CAS  Google Scholar 

  • Connolly, M. L. (1985b). J. Appl. Crystallogr. 18, 499–505.

    Article  CAS  Google Scholar 

  • Dill, K. A. (1990). Dominant forces in protein folding, Biochemistry 29, 7133–7155.

    Article  CAS  PubMed  Google Scholar 

  • Drexler, K. E. (1981). Molecular engineering: an approach to the development of general capabilities for molecular manipulation, Proc. Natl. Acad. Sci. USA 78, 5275–5278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engh, R. A., and Huber, R. (1991). Accurate bond angle parameters for X-ray protein structure refinement, Acta Crystallogr. A 47, 392–400.

    Article  Google Scholar 

  • Francl, M. M., Hunt, Jr., R. F., and Hehre, W. J. (1984). J. Am. Chem. Soc. 106, 563–570.

    Article  CAS  Google Scholar 

  • Johnson, M. S., and Overington, J. P. (1993). A structural basis for sequence comparisons. An evaluation of scoring methodologies, J. Mol. Biol. 233, 716–738.

    Article  CAS  PubMed  Google Scholar 

  • Jordan, J. (1973). J. Mol. Biol., 41, 375–395.

    CAS  Google Scholar 

  • Kabsch, W., and Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers 22, 2577–2637.

    Article  CAS  PubMed  Google Scholar 

  • Kauzmann, W. (1959). Adv. Protein Chem. 14, 1.

    Article  CAS  PubMed  Google Scholar 

  • Lee, B., and Richards, F. M. (1971). The interpretation of protein structures: Estimation of static accessibility, J. Mol. Biol. 55, 379–400.

    Article  CAS  PubMed  Google Scholar 

  • Lüthy, R., Bowie, J. U., and Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles, Nature 356, 83–85.

    Article  PubMed  Google Scholar 

  • Pabo, C. (1983). Designing proteins and peptides. Nature 301, 200.

    Article  CAS  PubMed  Google Scholar 

  • Pauling, L. (1960). The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York, p. 257.

    Google Scholar 

  • Reidhaar-Olson, J. F., and Sauer, R. T. (1988). Combinatorial cassette mutagenesis as a probe of the informational content of protein sequences, Science 241, 53–57.

    Article  CAS  PubMed  Google Scholar 

  • Sanders, S., and Kabisch, W. (1983). Biopolymers 22, 2577–2637.

    Article  Google Scholar 

  • Sellers, P. H. (1980). On the theory and computation of evolutionary distances: Pattern recognition, J. Algorithms 1, 359–373.

    Article  Google Scholar 

  • Sweet, R. M., and Eisenberg, D. (1983). Correlation of sequence hydrophobicities measures similarity in three-dimensional protein structure, J. Mol. Biol. 171, 479–488.

    Article  CAS  PubMed  Google Scholar 

  • Wilmanns, M., and Eisenberg, D. (1993). Three-dimensional profiles from residue-pair preferences: Identification of sequence with β/α-barrel fold, Proc. Natl. Acad. Sci. USA 90, 1379–1383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, K. Y. J., and Eisenberg, D. (1994). The three-dimensional profile method using residue preference as a continuous function of residue environment, Protein Sci. 3, 687–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deerfield, D.W., Holland-Minkley, A.M., Geigel, J. et al. Classification of the Environment of Protein Residues. J Protein Chem 16, 441–447 (1997). https://doi.org/10.1023/A:1026349124850

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026349124850

Navigation