Skip to main content
Log in

Transgenic Mice Reveal Roles for TGFα and EGF Receptor in Mammary Gland Development and Neoplasia

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Transforming growth factor-alpha (TGFα)4 and/or the EGF receptor (EGFR) are frequently overexpressed by human and rodent breast tumors, as well as tumor-derived cell lines. Additionally, various observations suggest a role for TGFα and the EGFR signaling system in normal mouse mammary gland development. Recently, several laboratories have established TGFα transgenic mice with which to study the role of this growth factor in normal and neoplastic mammary biology. Examination of these mice revealed that overexpression of TGFα has profound consequences for this tissue. Most strikingly, transgenic mice expressing TGFα under the control of tissue-specific and nonspecific promoters stochastically developed focal mammary tumors with an incidence and latency that was markedly affected by pregnancy. Most TGFα-induced tumors were well-differentiated adenomas/adenocarcinomas, although some were undifferentiated and locally invasive. Distant metastases were only occasionally observed. Administration of the genotoxic carcinogen, 7,12-dimethylbenzanthracene (DMBA), dramatically accelerated mammary tumorigenesis induced by the TGFα transgene, raising the possibility that TGFα acts as a promoter in this tissue. Mice harboring dual transgenes encoding TGFα and either wild-type ERBB2 or c-myc displayed markedly accelerated tumorigenesis compared to mice carrying any of the single transgenes alone, indicative of potent cooperativity. Moreover, tumorigenesis in the bitransgenic mice was less dependent on pregnancy, and tumors were generally more malignant in appearance. Finally, TGFα also affected mammary gland dynamics. TGFα transgenic mice consistently displayed precocious alveolar development, were variably impaired with respect to lactation, and showed markedly reduced postlactional involution. As a result, the glands of multiparous females accumulated hyperplastic lesions that generally resembled milk-producing alveoli. Limited data support the hypothesis that these lesions were precursors to TGFα-induced tumors. In summary, these various findings underscore the potential importance of TGFα for cellular differentiation and transformation in the mammary gland. They also establish TGFα transgenic mice as a powerful model with which to study the role of EGFR signaling molecules in this dynamic tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. D. C. Lee, S. E. Fenton, E. A. Berkowitz, and M. A. Hissong (1995). Transforming growth factor α: expression, regulation, and biological activities. Pharmacol. Rev. 47:51–85.

    Google Scholar 

  2. N. C. Luetteke, T. H. Qiu, R. L. Peiffer, P. Oliver, O. Smithies, and D. C. Lee (1993). TGFα deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice. Cell 73:263–278.

    Google Scholar 

  3. G. B. Mann, K. J. Fowler, A. Gabriel, E. C. Nice, R. L. Williams, and A. R. Dunn (1993). Mice with a null mutation of the TGFα gene have abnormal skin architecture, wavy hair, and curly whiskers and often develop corneal inflammation. Cell 73:249–261.

    Google Scholar 

  4. E. A. Berkowitz, K. B. Seroogy, J. A. Schroeder, W. E. Russell, E. P. Evans, R. F. Riedel, H. K. Phillips, C. A. Harrison, D. C. Lee, and N. C. Luetteke (1996). Characterization of the mouse transforming growth factor α gene: its expression during eyelid development and in waved I tissues. Cell Growth Diff. 7:1271–1282.

    Google Scholar 

  5. L. Panico, A. D'Antonio, G. Salvatore, E. Mezza, G. Tortora, M. D. Laurentiis, S. D. Placido, T. Giordano, M. Merino, D. S. Salomon, W. J. Mullick, G. Pettinato, S. J. Schnitt, A. R. Bianco, and F. Ciardiello (1996). Differential immunohistochemical detection of transforming growth factor alpha, amphiregulin and CRIPTO in human normal and malignant breast tissues. Int. J. Cancer. 65:51–56.

    Google Scholar 

  6. R. B. Dickson, M. D. Johnson, M. Bano, E. Shi, J. Kurebayashi, B. Ziff, I. Martinez-Lacaci, L. T. Amundadottir, and M. E. Lippman (1992). Growth factors in breast cancer: mitogenesis to transformation. J. Steroid Biochem. Mol. Biol. 43:69–78.

    Google Scholar 

  7. K. Stromberg, M. Duffy, C. Fritsch, W. R. Hudgins, E. S. Sharp, L. D. Murphy, M. E. Lippman, and S. E. Bates (1991). Comparison of urinary transforming growth factor-alpha in women with disseminated breast cancer and healthy control women. Cancer Det. Prev. 15:277–283.

    Google Scholar 

  8. S. C. Liu, B. Sanfillipo, I. Perroteau, R. Derynck, D. S. Salomon, and W. R. Kidwell (1987). Expression of transforming growth factor α (TGFα) in differentiated rat mammary tumors: estrogen induction of TGFα production. Mol. Endocrinol. 1:683–692.

    Google Scholar 

  9. S. E. Bates, N. E. Davidson, E. M. Valverius, C. E. Freter, R. B. Dickson, J. P. Tam, J. E. Kudlow, M. E. Lippman, and D. S. Salomon (1988). Expression of transforming growth factor α and its messenger ribonucleic acid in human breast cancer: its regulation by estrogen and its possible functional significance. Mol. Endocrinol. 2:543–555.

    Google Scholar 

  10. C. L. Arteaga, E. Coronado, and C. K. Osborne (1988). Blockade of the epidermal growth factor receptor inhibits transforming growth factor α-induced but not estrogen-induced growth of hormone-dependent human breast cancer. Mol. Endocrinol. 2:1064–1069.

    Google Scholar 

  11. M. L. McGeady, S. Kerby, V. Shankar, F. Ciardiello, D. Salomon, and M. Seidman (1989). Infection with a TGF-α retroviral vector transforms normal mouse mammary epithelial cells but not normal rat fibroblasts. Oncogene 4:1375–1382.

    Google Scholar 

  12. A. Rosenthal, P. B. Lindquist, T. S. Bringman, D. V. Goeddel, and R. Derynck (1986). Expression in rat fibroblasts of a human transforming growth factor-α cDNA results in transformation. Cell 46:301–309.

    Google Scholar 

  13. E. P. Sandgren, N. C. Luetteke, R. D. Palmiter, R. L. Brinster, and D. C. Lee (1990). Overexpression of TGFα in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. Cell 61:1121–1135.

    Google Scholar 

  14. C. Jhappan, C. Stahle, R. N. Harkins, N. Fausto, G. H. Smith, and G. T. Merlino (1990). TGFα overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell 61:1137–1146.

    Google Scholar 

  15. P. J. Dempsey, J. R. Goldenring, C. J. Soroka, I. M. Modlin, R. W. McClure, C. D. Lind, A. D. Ahlquist, M. R. Pittelkow, D. C. Lee, E. P. Sandgren, D. L. Page, and R. J. Coffey (1992). Possible role of transforming growth factor α in the patholgenesis of Menetrier's disease: supportive evidence from humans and transgenic mice. Gastroenterology. 103:1950–1963.

    Google Scholar 

  16. H. Takagi, C. Jhappan, R. Sharp, and G. Merlino (1992). Hypertrophic gastropathy resembling menetrier's disease in transgenic mice overexpressing transforming growth factor α in the stomach. J. Clin. Invest. 90:1161–1167.

    Google Scholar 

  17. Y. Matsui, S. A. Halter, J. T. Holt, B. L. M. Hogan, and R. J. Coffey (1990). Development of mammary hyperplasia and neoplasia in MMTV-TGFα transgenic mice. Cell 61:1147–1155.

    Google Scholar 

  18. S. A. Halter, P. Dempsey, Y. Matsui, M. K. Stokes, R. Graves-Deal, B. L. Hogan, and R. J. Coffey (1992). Distinctive patterns of hyperplasia in transgenic mice with mouse mammary virus transforming growth factor-α. Amer. J. Path. 140:1131–1146.

    Google Scholar 

  19. E. P. Sandgren, J. A. Schroeder, T. H. Qui, R. D. Palmiter, R. L. Brinster, and D. C. Lee (1995). Inhibition of mammary gland involution is associated with transforming growth factor α but not c-myc-induced tumorigenesis in transgenic mice. Cancer Res. 55:3915–3927.

    Google Scholar 

  20. R. A. McKnight, T. Burdon, V. G. Pursel, A. Shamay, R. J. Wall, and L. Hennighausen (1991). Genes, oncogenes, and hormones: advances in cellular and molecular biology of breast cancer, In The Whey Acidic Protein. R. B. Dickson and M. E. Lippman, (eds.), Kluwer Academic Publishers, Boston, pp 399–412.

    Google Scholar 

  21. G. H. Smith, R. Sharp, E. C. Kordon, C. Jhappan, and G. Merlino (1995). Transforming growth factor-α promotes mammary tumorigenesis through selective survival and growth of secretory epithelial cells. Am. J. Pathol. 147:1081–1096.

    Google Scholar 

  22. M. Hollstein, D. Sidransky, B. Vogelstein, and C. Harris (1991). p53 mutations in human cancers. Washington D.C. Science 253:49–53.

    Google Scholar 

  23. H. Matsushime, M. F. Roussel, R. A. Ashmun, and C. J. Sherr (1991). Colony-stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell 65:701–713.

    Google Scholar 

  24. C. L. Rosenberg, T. Motokura, H. M. Kronenberg, and A. Arnold (1993). Coding sequence of the overexpressed transcript of the putative oncogene PRAD1/cylin D1 in two primary human tumors. Oncogene 8:519–521.

    Google Scholar 

  25. E. Schuuring, E. Verhoeven, W. J. Mooi, and R. J. Michalides (1992). Identification and cloning of two overexpressed genes, U21B3/PRAD1 and EMS1, within the amplified chromosome 11q13 region in human carcinomas. Oncogene 7:355–361.

    Google Scholar 

  26. C. Gillet, V. Fantl, R. Smith, C. Fisher, J. Bartek, C. Dickson, D. Barnes, and G. Peters (1994). Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res. 54:1812–1817.

    Google Scholar 

  27. W. Jiang, S. M. Kahn, N. Tomita, Y.-J. Zhang, S.-H. Lu, and I. B. Weinstein (1992). Amplification and expression of the human cyclin D gene in esophageal cancer. Cancer Res. 52:2980–2983.

    Google Scholar 

  28. T. C. Wang, R. D. Cardiff, L. Zukerberg, E. Lees, A. Arnold, and E. V. Schmidt (1994). Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. (London) Nature 369:669–671.

    Google Scholar 

  29. A. Philipp, A. Schneider, I. Vasrik, K. Finke, Y. Xiong, D. Beach, K. Alitalo, and M. Eilers (1994). Repression of cyclin D1: a novel function of myc. Mol. Cell. Biol. 14:4032–4043.

    Google Scholar 

  30. L. T. Amundadottir, M. D. Johnson, G. Merlino, G. H. Smith, and R. B. Dickson (1995). Synergistic interaction of transforming growth factor α and c-myc in mouse mammary and salivary gland tumorigenesis. Cell Growth Diff. 6:737–748.

    Google Scholar 

  31. S. Sakai, M. Mizuno, T. Harigaya, K. Yamamoto, T. Mori, R. J. Coffey, and H. Nagasawa (1994). Cause of failure of lactation in mouse mammary tumor virus/human transforming growth factor α transgenic mice. Proc. Soc. Exp. Biol. Med. 205:236–242.

    Google Scholar 

  32. R. Strange, G. Li, S. Saure, A. Burkhardt, and R. R. Friis (1992). Apoptotic cell death and tissue remodeling during mouse mammary gland involution. Development 115:49–58.

    Google Scholar 

  33. D. Medina (1982). The mouse in biomedical research: experimental biology and oncology. In H. L. Foster, J. D. Small, and J. G. Fox, (eds.) Academic Press, New York, pp. 373–396.

    Google Scholar 

  34. M. Reiss, E. B. Stash, V. F. Vellucci, and Z.-L. Zhou (1991). Activation of the autocrine transforming growth factor α pathway in human squamous carcinoma cells. Cancer Res. 51:6254–6262.

    Google Scholar 

  35. E. Finzi, T. Ho, G. Anhalt, W. Hawkins, R. Harkins, and T. Horn (1992). Localization of transforming growth factor-α in human appendageal tumors. Am. J. Pathol. 141:643–653.

    Google Scholar 

  36. C. Liu, M.-S. Tsao, and J. W. Grisham (1988). Transforming growth factors produced by normal and neoplastically transformed rat liver epithelia cells in culture. Cancer Res. 48:850–855.

    Google Scholar 

  37. C. Liu, A. Woo, and M.-S. Tsao (1990). Expression of transforming growth factor-alpha in primary human colon and lung carcinomas. Br. J. Cancer 62:425–429.

    Google Scholar 

  38. J. W. Grisham, M.-S. Tsao, D. C. Lee, and H. S. Earp (1990). Sequential changes in epidermal growth factor receptor/ligand function in cultured rat liver epithelial cells transformed chemically in vitro. Pathobiology 58:3–14.

    Google Scholar 

  39. L. W. Lee, V. W. Raymond, M.-S. Tsao, D. C. Lee, H. S. Earp, and J. W. Grisham (1991). Clonal cosegregation of tumorigenicity with overexpression of c-myc and transforming growth factor-α genes in chemically transformed rat liver epithelial cells. Cancer Res. 51:5238–5244.

    Google Scholar 

  40. S. Tanaka, K. Imanishi, M. Yoshihara, K. Haruma, K. Sumii, G. Kajiyama, and S. Akamatsu (1991). Immunoreactive transforming growth factor alpha is commonly present in colorectal neoplasia. Am. J. Pathol. 139:123–129.

    Google Scholar 

  41. R. J. Coffey Jr., K. S. Meise, Y. Matsui, B. L. M. Hogan, P. J. Dempsey, and S. A. Halter (1994). Acceleration of mammary neoplasia in transforming growth factor α transgenic mice by 7,12-dimethylbenzanthracene. Cancer Res. 54:1678–1683.

    Google Scholar 

  42. W. E. Russell, W. K. Kaufmann, S. Sitaric, N. C. Luetteke, and D. C. Lee (1996). Liver regeneration and hepatocarcinogenesis in transforming growth factor-α-targeted mice. Mol. Carcin. 15:183–189.

    Google Scholar 

  43. J. M. Varley, J. E. Swallow, W. J. Brammar, J. L. Whittaker, and R. A. Walker (1987). Alterations to eithr c-erbB-2(neu) or c-myc and proto-oncogenes in breast carcinomas correlate with poor short-term prognosis. Oncogene 1:423–430.

    Google Scholar 

  44. R. B. Dickson, A. Kasid, K. K. Huff, S. E. Bates, C. Knabbe, D. Bronzert, E. P. Gelmann, and M. E. Lippman (1987). Activation of growth factor secretion in tumorigenic states of breast cancer induced by 17β-estradiol or v-Ha-ras oncogene. Proc. Natl. Acad. Sci. U.S.A. 84:837–841.

    Google Scholar 

  45. R. B. Dickson, K. K. Huff, E. M. Spencer, and M. E. Lippman (1986). Induction of epidermal growth factor-related polypeptides by 17β-estradiol in MCF-7 human breast cancer cells. Endocrinology 118:138–142.

    Google Scholar 

  46. S. E. Bates, M. E. McManaway, M. E. Lippman, and R. B. Dickson (1986). Characterization of estrogen responsive transforming activity in human breast cancer cell lines. Cancer Res. 46:1707–1713.

    Google Scholar 

  47. D. Dubik, T. C. Dembinski, and R. P. C. Shiu (1987). Stimulation of c-myc oncogene expression associated with estrogen-induced proliferation of human breast cancer cell. Cancer Res. 47:6517–6521.

    Google Scholar 

  48. D. Dubik and R. P. C. Shiu (1988). Transcriptional regulation of c-myc oncogene expression by estrogen in homone-responsive human breast cancer cells. J. Biol. Chem. 263:12705–12708.

    Google Scholar 

  49. E. P. Sandgren, N. C. Luetteke, T. H. Qiu, R. D. Palmiter, R. L. Brinster, and D. C. Lee (1993). Transforming growth factor alpha dramatically enhances oncogene-induced carcinogenesis in transgenic mouse pancreas and liver. Mol. Cell. Biol. 13:320–330.

    Google Scholar 

  50. C. R. King, M. H. Kraus, and S. A. Aaronson (1985). Amplification of a novel v-erbB related gene in human mammary carcinoma. Science 229:974–976.

    Google Scholar 

  51. D. J. Slamon, G. M. Clark, S. G. Wong, W. J. Levin, A. Ullrich, and W. L. McGuire (1987). Human breast cancer: correlation of relapse and survival with amplification of Her-2/neu oncogene. Science 235:177–182.

    Google Scholar 

  52. M. van de Vijver, R. van de Bersselaar, P. Devilee, C. Cornelisse, J. Peterse, and R. Nusse (1987). Amplification of the neu (c-erbB-2) oncogene in human mammary tumors is relatevely frequent and is often accompanied by amplification of the linked c-erbA oncogene. Mol. Cell Biol. 7:2019–2023.

    Google Scholar 

  53. W. J. Gullick, S. B. Love, C. Wright, D. M. Barnes, B. Gutterson, A. L. Harris, and D. G. Altman (1991). c-erbB-2 protein overexpression in breast cancer is a risk factor in patients with involved and uninvolved lymph nodes. Br. J. Cancer. 63:434–438.

    Google Scholar 

  54. M. C. Paterson, K. D. Dietrich, J. Danyluk, A. H. Paterson, A. W. Lees, N. Jamil, J. Hanson, H. Jenkins, B. E. Krause, W. A. McBlain, D. J. Slamon, and R. M. Fourney (1991). Correlation between c-erbB-2 amplification and risk of recurrent disease in node-negative breast cancer. Cancer Res. 51:556–567.

    Google Scholar 

  55. E. Tzahar, H. Waterman, X. Chen, G. Levkowitz, D. Karunagaran, S. Lavi, B. J. Ratzkin, and Y. Yarden (1996). A hierarchical network of interreceptor interactions determines signal transduction by neu differentiation factor/neuregulin and epidermal growth factor. Mol. Cell. Biol. 16:5276–5287.

    Google Scholar 

  56. W. J. Muller, E. Sinn, R. Wallace, P. K. Pattengale, and P. Leder (1988). Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54:105–115.

    Google Scholar 

  57. L. Bouchard, L. Lamarre, P. J. Tremblay, and P. Jolicoeur (1989). Stochastic appearance of mammary tumors in transgenic mice carrying the activated c-neu oncogene. Cell 57:931–936.

    Google Scholar 

  58. C. T. Guy, M. A. Webster, M. Schaller, T. J. Parson, R. D. Cardiff, and W. J. Muller (1992). Expression of the neu proto-oncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc. Natl. Acad. Sci. U.S.A. 89:10578–10582.

    Google Scholar 

  59. P. M. Siegel, D. L. Dankort, W. R. Hardy, and W. J. Muller (1994). Novel acting mutations in the neu proto-oncogene involved in induction of mammary tumors. Mol. Cell Biol. 14:7068–7077.

    Google Scholar 

  60. W. J. Muller, C. L. Arteaga, S. K. Muthuswamy, P. M. Siegel, M. A. Webster, R. D. Cardiff, K. S. Meise, F. Li, S. A. Halter, and R. J. Coffey (1996). Synergistic interaction of the neu proto-oncogene product and transforming growth factor α in the mammary epithelium of transgenic mice. Mol. Cell Biol. 16:5726–5736.

    Google Scholar 

  61. D. S. Liscia, G. Merlo, F. Ciardello, N. Kim, G. H. Smith, R. Callahan, and D. S. Salomon (1990). Transforming growth factor-α messenger RNA localization in the developing adult rat and human mammary gland by in situ hybridization. Develop Biol. 140:123–131.

    Google Scholar 

  62. S. M. Snedeker, C. F. Brown, and R. P. Augustine (1991). Expression and functional properties of transforming growth factor α and epidermal growth factor during mouse mammary gland ductal morphogenesis. Proc. Natl. Acad. Sci. U.S.A. 88:8167–8171.

    Google Scholar 

  63. N. C. Luetteke, H. K. Phillips, T. H. Qiu, N. G. Copeland, H. S. Earp, N. A. Jenkins, and D. C. Lee (1994). The mouse waved-2 phenotype results from a point mutation in the EGF receptor tyrosine kinase. Genes and Dev. 8:263–278.

    Google Scholar 

  64. K. J. Fowler, F. Walker, W. Alexander, M. L. Hibbs, E. C. Nice, R. M. Bohmer, G. B. Mann, C. Thumwood, R. Maglitto, J. A. Danks, R. Chetty, A. W. Burgess, and A. R. Dunn (1995). A mutation in the epidermal growth factor receptor in waved-2 mice has a profound effect on receptor biochemistry that results in impaired lactation. Proc. Natl. Acad. Sci. U.S.A. 92:1465–1469.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schroeder, J.A., Lee, D.C. Transgenic Mice Reveal Roles for TGFα and EGF Receptor in Mammary Gland Development and Neoplasia. J Mammary Gland Biol Neoplasia 2, 119–129 (1997). https://doi.org/10.1023/A:1026347629876

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026347629876

Navigation