Skip to main content
Log in

Modulation of Glutamine Synthesis in Cultured Astrocytes by Nitric Oxide

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. Previous results suggest that glutamine synthesis in brain could be modulated by nitrix oxide. The aim of this work was to assess this possibility.

2. As glutamine synthetase in brain is located mainly in astrocytes, we used primary cultures of astrocytes to assess the effects of increasing or decreasing nitrix oxide levels on glutamine synthesis in intact astrocytes.

3. Nitric oxide levels were decreased by adding nitroarginine, an inhibitor of nitric oxide synthase. To increase nitric oxide we used S-nitroso-N-acetylpenicillamine, a nitric oxide generating agent.

4. It is shown that S-nitroso-N-acetylpenicillamine decreases glutamine synthesis in intact astrocytes by ≈40–50%. Nitroarginine increases glutamine synthesis slightly in intact astrocytes.

5. These results indicate that brain glutamine synthesis may be modulated in vivo by nitric oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Brown, J. F., Hanson, P. J., and Whittle, B. J. R. (1993). The nitric oxide donor, S-nitroso-N-acetyl-penicillamine inhibits secretory activity in rat isolated parietal cells. Biochem. Biophys. Res. Commun. 195:1354–1359.

    Google Scholar 

  • Carney, J. M., Starke-Reed, P. E., Oliver, C. N., Landum, R. W., Cheng, M. S., Wu, J. F., and Floyd, R. A. (1991). Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-α-phenylnitrone. Proc. Natl. Acad. Sci. USA 88:3633–3636.

    Google Scholar 

  • Cervera, J., and Levine, R. L. (1988). Modulation of the hydrophobicity of glutamine synthetase by mixed-function oxidation. FASEB J. 2:2591–2595.

    Google Scholar 

  • Climent, I., and Levine, R. (1991). Oxidation of the active site of glutamine synthetase: Conversion of arginine-344 to gamma-glutamyl semialdehyde. Arch. Biochem. Biophys. 289:371–375.

    Google Scholar 

  • Dicker, E., and Cederbaum, A. I. (1993). Requirement for iron for the production of hydroxyl radicals by rat liver quinone reductase. J. Pharmacol. Exp. Ther. 266:1282–1290.

    Google Scholar 

  • Farinelli, S. E., and Nicklas, W. J. (1992). Glutamate metabolism in rat cortical astrocyte cultures. J. Neurochem. 58:1905–1915.

    Google Scholar 

  • Floyd, R. A., and Carney, J. M. (1992). Free radical damage to protein and DNA: Mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann. Neurol. 32:S22–S27.

    Google Scholar 

  • Garthwaite, J., Southam, E., and Anderton, M. (1989). A kainate receptor linked to nitric oxide synthesis from arginine. J. Neurochem. 53:1952–1954.

    Google Scholar 

  • Gopalakrishna, R., Chen, Z. H., and Gundimeda, U. (1993). Nitric oxide and nitric oxide-generating agents induce a reversible inactivation of protein kinase C activity and phorbol ester binding. J. Biol. Chem. 268:27180–27185.

    Google Scholar 

  • Hallermayer, K., Harmening, C., and Hamprecht, B. (1981). Cellular localization and regulation of glutamine synthetase in primary cultures of brain cells from newborn mice. J. Neurochem. 37:43–52.

    Google Scholar 

  • Hensley, K., Carney, J. M., Mattson, M. P., Aksenova, M., Harris, M., Wu, J. F., Floyd, R. A., and Butterfield, D. A. (1994). A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: Relevance to Alzheimer disease. Proc. Natl. Acad. Sci. USA 91:3270–3274.

    Google Scholar 

  • Kosenko, E., Kaminsky, Y., Grau, E., Miñana, M. D., Grisolía, S., and Felipo, V. (1995). Nitroarginine, an inhibitor of nitrix oxide synthetase, attenuates ammonia toxicity and ammoniainduced alterations in brain metabolism. Neurochem. Res. 20:451–456.

    Google Scholar 

  • Lam, H. R., Ostergaard, G., Guo, S. X., Ladefoged, O., and Bondy, S. C. (1994). Three weeks' exposure of rats to dearomatized white spirit modifies indices of oxidative stress in brain, kidney and liver. Biochem. Pharmacol. 47:651–657.

    Google Scholar 

  • Levine, R. L. (1983). Oxidative modification of glutamine synthetase: Inactivation is due to loss of one histidine residue. J. Biol. Chem. 258:11823–11827.

    Google Scholar 

  • Levine, R. L., Oliver, C. N., Fulks, R. M., and Stadtman, E. R. (1981). Turnover of bacterial glutamine synthetase: Oxidative inactivation precedes proteolysis. Proc. Natl. Acad. Sci. USA 78:2120–2124.

    Google Scholar 

  • Marin, P., Lafon-Cazal, M., and Bockaert, J. (1992). A nitric oxide synthase activity selectively stimulated by NMDA receptors depends on protein kinase C activation in mouse striatal neurons. Eur. J. Neurosci. 4:425–432.

    Google Scholar 

  • Martin, D. L., and Shain, W. (1979). High affinity transport of taurine and β-alanine and low affinity transport of Γ-aminobutyric acid by a single transport system in cultured glioma cells. J. Biol. Chem. 254:7076–7084.

    Google Scholar 

  • Martinez-Hernandez, A., Bell, K. P., and Norenberg, M. D. (1977). Glutamine synthetase: Glial localization in brain. Science 195:1356–1358.

    Google Scholar 

  • McBean, G. J., Doorty, K. B., Tipton, K. F., and Kolleger, H. (1995). Alteration in the glial cell metabolism of glutamate by kainate and N-methyl-D-aspartate. Toxicon 33:569–576.

    Google Scholar 

  • McKenna, M. C., Sonnewald, U., Huang, X., Stevenson, J., and Zielke, H. R. (1996). Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J. Neurochem. 66:386–393.

    Google Scholar 

  • Miki, N., Kawabe, Y., and Kuriyama, K. (1977). Activation of cerebral guanylate cyclase by nitric oxide. Biochem. Biophys. Res. Commun. 75:851–856.

    Google Scholar 

  • Murphy, S., Simmons, M. L., Agullo, L., Garcia, A., Freinstein, D. L., Galea, E., Reis, D. J., Minc-Golomb, D., and Schwartz, J. P. (1993). Synthesis of nitric oxide in CNS glial cells. TiNS 16:323–328.

    Google Scholar 

  • Nakamura, K., and Stadtman, E. R. (1984). Oxidative inactivation of glutamine synthetase subunits. Proc. Natl. Acad. Sci. USA 81:2011–2015.

    Google Scholar 

  • Oliver, C. N., Starke-Reed, P. E., Stadtman, E. R., Liu, G. J., Carney, J. M., and Floyd, R. A. (1990). Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc. Natl. Acad. Sci. USA 87:5144–5147.

    Google Scholar 

  • Pogun, S., Dawson, W., and Kuhar, M. J. (1994). Nitric oxide inhibits 3H-glutamate transport in synaptosomes. Synapse 18:21–26.

    Google Scholar 

  • Renau-Piqueras, J., Zaragoza, De Paz, P., Baguena-Cervellera, R., Megías, L., and Guerri, C. (1989). Effects of prolonged ethanol exposure on the glial fibrillary protein-containing intermediate filaments of astrocytes in primary culture: A quantitative immunofluorescence and immunogold electron microscopic study. J. Histochem. Cytochem. 37:229–240.

    Google Scholar 

  • Rivett, A. J. (1985). Preferential degradation of the oxidatively modified form of glutamine synthetase by intracellular mammalian proteases. J. Biol. Chem. 260:300–306.

    Google Scholar 

  • Rothstein, J. D., and Tabakoff, B. (1984). Alteration of striatal glutamate release after glutamine synthetase inhibition. J. Neurochem. 43:1438–1446.

    Google Scholar 

  • Vincent, S. R., and Kimura, H. (1992). Histochemical mapping of nitric oxide synthease in the rat brain. Neuroscience 46:755–784.

    Google Scholar 

  • Waniewski, R. A. (1992). Physiological levels of ammonia regulate glutamine synthesis from extracellular glutamate in astrocyte cultures. J. Neurochem. 58:167–174.

    Google Scholar 

  • Waniewski, R. A., and Martin, D. L. (1986). Exogenous glutamate is metabolized to glutamine and exported by rat primary astrocyte cultures. J. Neurochem. 47:304–313.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miñana, MD., Kosenko, E., Marcaida, G. et al. Modulation of Glutamine Synthesis in Cultured Astrocytes by Nitric Oxide. Cell Mol Neurobiol 17, 433–445 (1997). https://doi.org/10.1023/A:1026339428059

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026339428059

Navigation