Journal of Mammary Gland Biology and Neoplasia

, Volume 2, Issue 4, pp 323–334 | Cite as

Mammary Gland Development and Tumorigenesis in Estrogen Receptor Knockout Mice

  • Wayne P. Bocchinfuso
  • Kenneth S. Korach
Article

Abstract

Estrogens are important for the development of the mammary gland and strongly associated with oncogenesis in this tissue. The biological effects of estrogens are mediated through the estrogen receptor (ER),3 a member of the nuclear receptor superfamily. The estrogen/ER signaling pathway plays a central role in mammary gland development, regulating the expression and activity of other growth factors and their receptors. The generation of the ER knockout (ERKO) mouse has made it possible to directly understand the contribution of ER in mammary development and has provided an unique opportunity to study estrogen action in carcinogenesis. A mammary oncogene (Wnt-1) was introduced into the ERKO background to determine if the absence of the ER would affect the development of tumors induced by oncogenic stimulation. The development, hyperplasia, and tumorigenesis in mammary glands from the ERKO/Wnt-1 mouse line are described. These studies provide the impetus to evaluate the effect of other oncogenes in mammary tumorigenesis in the absence of estrogen/ER signaling.

Wnt-1 breast cancer hyperplasia progesterone prolactin cyclin D1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    F. W. George and J. D. Wilson (1988). Sex determination and differentiation. In E. Knobil, J. D. Neil, L. L. Ewing, G. S. Greenwald, C. L. Markert, and D. W. Pfaff, (eds.), The Physiology of Reproduction, Raven Press, New York, pp. 3–26.Google Scholar
  2. 2.
    R. J. Auchus and S. A. W. Fuqua (1994). The estrogen receptor. In M. C. Sheppard and P. M. Stewart, (eds.), Bailliere's Clinical Endocrinology and Metabolism: Hormones, Enzymes, and Receptors, Bailliere Tindall, London, pp. 433–449.Google Scholar
  3. 3.
    D. R. Ciocca and L. M. Vargas Roig (1995). Estrogen receptors in human nontarget tissues: biological and clinical implications. Endocrine Rev. 16:35–62.Google Scholar
  4. 4.
    M. J. Tsai and B. W. O'Malley (1994). Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Ann. Rev. Biochem. 63:451–486.PubMedGoogle Scholar
  5. 5.
    D. Metzger, S. Ali, J. M. Bornert, and P. Chambon (1995). Characterization of the aminoterminal transcriptional activation function of the human estrogen receptor in animal and yeast cells. J. Biol. Chem. 270:9535–9542.PubMedGoogle Scholar
  6. 6.
    K. B. Horwitz, T. A. Jackson, D. L. Bain, J. K. Richer, G. S. Takimoto, and L. Lung (1996). Nuclear receptor coactivators and corepressors. Mol. Endocrinol. 10:1167–1177.PubMedGoogle Scholar
  7. 7.
    J. A. Katzenellenbogen, B. W. O'Malley, and B. S. Kazenellenbogen (1996). Tripartite steroid hormone receptor pharmacology: interaction with multiple effector sites as a basis for the cell-and promoter-specific action of these hormones. Mol. Endocrinol. 10:119–131.PubMedGoogle Scholar
  8. 8.
    J. C. Barrett and T. Tsutsui (1996). Mechanisms of estrogenassociated carcinogenesis. In J. Huff, J. Boyd, and J. C. Barrett, (eds.), Cellular and Molecular Mechanisms of Hormonal Carcinogenesis: Environmental Influences, Wiley-Liss, New York, pp. 105–111.Google Scholar
  9. 9.
    S. G. Hillier (1991). Introvarian steroid action. In R. B. Hochberg and F. Naftolin, (eds.), New Biology of Steroid Hormones, Raven Press, New York, pp. 227–234.Google Scholar
  10. 10.
    J. N. Kenney and R. B. Dickson (1996). Growth factor and sex steroid interactions in breast cancer. J. Mam. Gland Biol. Neoplasia 1:189–198.Google Scholar
  11. 11.
    G. D. Jahnke and J. C. Barrett (1996). Environmental causes and molecular biology of breast cancer: future research directions. In J. Huff, J. Boyd, and J. C. Barrett, (eds.), Cellular and Molecular Mechanisms of Hormonal Carcinogenesis: Environmental Influences, Wiley-Liss, New York, pp. 455–469.Google Scholar
  12. 12.
    C. L. Smith, O. M. Conneely, and B. W. O'Malley (1995). Oestrogen receptor activation in the absence of ligand. Biochem. Soc. Trans. 23:935–939.PubMedGoogle Scholar
  13. 13.
    E. P. Smith, J. Boyd, G. R. Frank, H. Takahashi, R. M. Cohen, B. Specker, T. C. Williams, D. B. Lubahn, and K. S. Korach (1994). Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man [see comments]. N. Engl. J. Med. 331:1056–1061.PubMedGoogle Scholar
  14. 14.
    D. B. Lubahn, J. S. Moyer, T. S. Golding, J. F. Couse, K. S. Korach, and O. Smithies (1993). Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc. Natl. Acad. Sci. U.S.A. 90:11162–11166.PubMedGoogle Scholar
  15. 15.
    K. S. Korach (1994). Insights from the study of animals lacking functional estrogen receptor. Science 266:1524–1527.PubMedGoogle Scholar
  16. 16.
    J. F. Couse, S. W. Curtis, T. F. Washburn, J. Lindzey, T. S. Golding, D. B. Lubahn, O. Smithies, and K. S. Korach (1995). Analysis of transcription and estrogen insensitivity in the female mouse after targeted disruption of the estrogen receptor gene. Mol. Endocrinol. 9:1441–1454.PubMedGoogle Scholar
  17. 17.
    J. F. Couse, V. L. Davis, and K. S. Korach (1996). Physiological findings from transgenic mouse models with altered levels of estrogen receptor expression. In E. J. Pavlik, (ed.), Estrogens, Progestins, and Their Antagonists, Volume 2, Birkhauser, Boston, pp. 69–98.Google Scholar
  18. 18.
    K. S. Korach, J. F. Couse, S. W. Curtis, T. F. Wasburn, J. K. Lindzey, K. S. Kimbro, E. M. Eddy, S. Migliaccio, S. M. Snedecker, D. B. Lubahn, D. W. Schomberg, and E. P. Smith (1996). Estrogen receptor gene disruption: molecular characterization and experimental and clinical phenotypes. Rec. Prog. Horm. Res. 51:159–188.PubMedGoogle Scholar
  19. 19.
    C. T. Teng, B. T. Pentecost, Y. H. Chen, R. R. Newbold, E. M. Eddy, and J. A. McLachlan (1989). Lactotransferrin gene expression in the mouse uterus and mammary gland. Endocrinology 124:992–999.PubMedGoogle Scholar
  20. 20.
    W. L. Kraus and B. S. Katzenellenbogen (1993). Regulation of progesterone receptor gene expression and growth in the rat uterus: modulation of estrogen actions by progesterone and sex steroid hormone antagonists. Endocrinology 132:2371–2379.PubMedGoogle Scholar
  21. 21.
    S. W. Curtis, T. Wasburn, S. Charles, R. DiAugustine, J. Lindzey, J. F. Couse, and K. S. Korach (1996). Physiological coupling of growth factor and steroid receptor signaling pathways: estrogen receptor knockout mice lack estrogen-like response to epidermal growth factor. Proc. Acad. Natl. Sci. U.S.A. 93:12626–12630.Google Scholar
  22. 22.
    M. N. Patterson, M. J., McPhaul and I. A. Hughes (1994). Androgen insensitivity syndrome. In M. C. Sheppard and P. M. Stewart, (eds.), Bailliere's Clinical Endocrinology and Metabolism: Hormones, Enzymes and Receptors, Bailliere Tindall, London, pp. 379–404.Google Scholar
  23. 23.
    M. Hewison and J. L. H. O'Riordan (1994). Vitamin D resistance. In M. C. Sheppard and P. M. Stewart, (eds.), Bailliere's Clinical Endocrinology and Metabolism: Hormones, Enzymes and Receptors, Bailliere Tindall, London, pp. 305–315.Google Scholar
  24. 24.
    V. K. K. Chatterjee and P. Beck-Peccoz (1994). Thyroid hormone resistance. In M. C. Sheppard and P. M. Stewart, (eds.), Bailliere's Clinical Endocrinology and Metabolism: Hormones, Enzymes and Receptors, Bailliere Tindall, London, pp. 267–283.Google Scholar
  25. 25.
    I. H. Russo and J. Russo (1996). Mammary gland neoplasia in long-term rodent studies. Environ. Health Perspect. 104:938–967.PubMedGoogle Scholar
  26. 26.
    D. L. Kleinberg (1997). Early mammary development: growth hormone and IGF-1. J. Mam. Gland Biol. Neoplasia 2:49–57.Google Scholar
  27. 27.
    C. W. Daniel, G. B. Silberstein, and P. Strickland (1987). Direct action of 17β-estradiol on mouse mammary ducts analyzed by sustained release implants and steroid autoradiography. Cancer Res. 47:6052–6057.PubMedGoogle Scholar
  28. 28.
    G. B. Silberstein, K. Van Horn, G. Shymala, and C. W. Daniel (1994). Esential role of endogenous estrogen in directly stimulating mammary growth demonstrated by implants containing pure antiestrogens. Endocrinology 134:84–90.PubMedGoogle Scholar
  29. 29.
    R. B. Dickson and M. E. Lippman (1995). Growth factors in breast cancer. Endocrine. Rev. 16:559–589.Google Scholar
  30. 30.
    R. P. DiAugustine, R. G. Richards, and J. Sebastian (1997). EGF-related peptides and their receptors in mammary gland development. J. Mam. Gland Biol. Neoplasia 2:109–117.Google Scholar
  31. 31.
    D. M. Ignar Trowbridge, C. T. Teng, K. A. Ross, M. G. Parker, K. S. Korach, and J. A. McLachlan (1993). Peptide growth factors elicit estrogen receptor-dependent transcriptional activation of an estrogen-responsive element. Mol. Endocrinol. 7:992–998.PubMedGoogle Scholar
  32. 32.
    R. J. Pietras, J. Arboleda, D. M. Reese, N. Wongvipat, M. D. Pegram, L. Ramos, C. M. Gorman, M. G. Parker, M. X. Sliwkowski, and D. J. Slamon (1995). HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene 10:2435–2446.PubMedGoogle Scholar
  33. 33.
    D. M. Ignar-Trowbridge, M. Pimentel, M. G. Parker, J. A. McLachlan, and K. S. Korach (1996). Peptide growth factor-cross-talk with the estrogen receptor requires the A/B domain and occurs independently of protein kinase C or estradiol. Endocrinology 137:1735–1744.PubMedGoogle Scholar
  34. 34.
    S. Kato, H. Endoh, Y. Masuhiro, T. Kitamoto, S. Uchiyama, H. Sasaki, S. Masushige, Y. Gotoh, E. Nishida, H. Kawashima, D. Metzger, and P. Chambon (1995). Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270:1491–1494.PubMedGoogle Scholar
  35. 35.
    M. Saceda, C. Knabbe, R. B. Dickson, M. E. Lippman, D. Bronzart, R. L. Lindsay, M. Gottardis, and M. B. Martin (1991). Postranscriptional destabilization of estrogen receptor mRNA in MCF-7 cells by 12-O-tetradecanoylphorbol-13 acetate. J. Biol. Chem. 266:17809–17814.PubMedGoogle Scholar
  36. 36.
    S. Z. Haslam (1988). Acquisition of estrogen-dependent progesterone receptors by normal mouse mammary gland. Ontogeny of mammary progesterone receptors. J. Steroid Biochem. 31:9–13.PubMedGoogle Scholar
  37. 37.
    R. Das and B. K. Vonderhaar (1997). Prolactin as a mitogen in mammary cells. J. Mam. Gland Biol. Neoplasia 2: 29–39.Google Scholar
  38. 38.
    J. P. Lydon, F. J. DeMayo, C. R. Funk, S. K. Mani, A. R. Hughes, C. A. Montgomery Jr., G. Shymala, O. M. Conneely, and B. W. O'Malley (1995). Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 9:2266–2278.PubMedGoogle Scholar
  39. 39.
    C. J. Ormandy, A. Camus, J. Barra, D. Damotte, B. Lucas, H. Buteau, M. Edery, N. Brousse, C. Babinet, N. Binart, and P. A. Kelly (1997). Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev. 11:167–178.PubMedGoogle Scholar
  40. 40.
    T. J. A. Key and M. C. Pike (1988). The role of oestrogens and progestagens in the epidemiology and prevention of breast cancer. Eur. J. Cancer Clin. Oncol. 24:29–43.PubMedGoogle Scholar
  41. 41.
    S. M. Snedecker and R. P. Diaugustine (1996). Hormonal and environmental factors affecting cell proliferation and neoplasia in the mammary gland. In J. Huff, J. Boyd, and J. C. Barrett, (eds.), Cellular and Molecular Mechanisms of Hormonal Carcinogenesis: Environmental Influences, Wiley-Liss, New York, pp. 211–253.Google Scholar
  42. 42.
    C. G. Castles and S. A. W. Fuqua (1996). Alterations within the estrogen receptor in breast cancer. In J. R. Pasqualini and B. S. Katznellenbogen, (eds.), Hormone-Dependent Cancer, Marcel Dekker, Inc., New York, pp. 81–105.Google Scholar
  43. 43.
    E. A. Musgrove, R. Hui, K. J. E. Sweeney, C. K. W. Watts, and R. L. Sutherland (1996). Cyclins and breast cancer. J. Mam. Gland Biol. Neoplasia 1:153–162.Google Scholar
  44. 44.
    P. Sicinski, J. L. Donaher, S. B. Parker, T. Li, A. Fazeli, H. Gardner, S. Z. Haslam, R. T. Bronson, S. J. Elledge, and R. A. Weinberg (1995). Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82:621–630.PubMedGoogle Scholar
  45. 45.
    T. C. Wang, R. D. Cardiff, L. Zukerberg, E. Lees, A. Arnold, and E. V. Schmidt (1994). Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369:669–671.PubMedGoogle Scholar
  46. 46.
    P. Sicinski and R. A. Weinberg (1997). A specific role for cyclin D1 in mammary gland development. J. Mam. Gland Biol. Neoplasia 2:335–342.Google Scholar
  47. 47.
    R. M. L. Zwijsen, E. Wientjens, R. Klompmaker, J. van der Sman, R. Bernards, and R. J. A. M. Michalides (1997). CDK-independent activation of estrogen receptor by cyclin D1. Cell 88:405–415.PubMedGoogle Scholar
  48. 48.
    B. E. Nowakowski and R. A. Maurer (1994). Multiple Pit-1 binding sites facilitate estrogen responsiveness of the prolactin gene. Mol. Endocrinol. 8:1742–1749.PubMedGoogle Scholar
  49. 49.
    G. R. Cunha, P. Young, Y-K Hom, P. S. Cooke, J. A. Taylor, and D. B. Lubahn (1997). Mechanism of estrogen action in mesenchymal-epithelial interactions in the mammary gland. J. Mam. Gland Biol. Neoplasia 2:393–402.Google Scholar
  50. 50.
    K. M. Scully, A. S. Gleiberman, J. K. Lindzey, D. B. Lubahn, K. S. Korach, and M. G. Rosenfeld (1997). Role of estrogen receptor α in the anterior pituitary gland. Mol. Endocrinol. 11:674–681.PubMedGoogle Scholar
  51. 51.
    P. Godfrey, J. O. Rahal, W. G. Beamer, M. G. Copeland, N. A. Jenkins, and K. E. Mayo (1993). GHRH receptor of little mice contains a missense mutation in the extracellular domain that disrupts receptor function. Nat. Genet. 4:227–232.PubMedGoogle Scholar
  52. 52.
    E. M. Keough and B. G. Wood (1979). Mammary gland development during pregnancy in the dwarf mouse mutant, little. Tissue Cell 11:773–780.PubMedGoogle Scholar
  53. 53.
    R. Nusse and H. E. Varmus (1992). Wnt genes. Cell 69:1073–1087.PubMedGoogle Scholar
  54. 54.
    R. Nusse, A. van Ooyen, D. Cox, Y. K. T. Fung and H. E. Varmus (1984). Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307:131–136.PubMedGoogle Scholar
  55. 55.
    B. J. Gavin and A. P. McMahon (1992). Differential regulation of the Wnt gene family during pregnancy and lactation suggests a role in postnatal development of the mammary gland. Mol. Cell. Biol. 12:2418–2423.PubMedGoogle Scholar
  56. 56.
    P. Bhanot, M. Brink, C. H. Samos, J.-C. Hsieh, Y. Wang, J. P. Macke, D. Andrew, J. Nathans, and R. Nusse (1996). A new member of the frizzled family from drosophila functions as a wingless receptor. Nature 382:225–230.PubMedGoogle Scholar
  57. 57.
    J. Behrens, J. P. von Kries, M. Kuhl, L. Bruhn, D. Wedlich, R. Grosschedl, and W. Birchmeier (1996). Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382:638–642.PubMedGoogle Scholar
  58. 58.
    T. Hunter (1997). Oncoprotein networks. Cell 88:333–346.PubMedGoogle Scholar
  59. 59.
    M. Peifer (1997). β-catenin as oncogene: the smoking gun. Science 275:1752–1753.PubMedGoogle Scholar
  60. 60.
    A. S. Tsukamoto, R. Grosschedl, R. C. Guzman, T. Parslow, and H. E. Varmus (1988). Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55:619–625.PubMedGoogle Scholar
  61. 61.
    G. R. Cunha and Y. K. Hom (1996). Role of mesenchyme-epithelial interactions in mammary gland development. J. Mam. Gland Biol. Neoplasia 1:21–35.Google Scholar
  62. 62.
    T.-P. Lin, R. C. Guzman, R. C. Osborn, G. Thordarson, and S. Nandi (1992). Role of endocrine, autocrine, and paracrine interactions in the development of mammary hyperplasia in Wnt-1 transgenic mice. Cancer Res. 52:4413–4419.PubMedGoogle Scholar
  63. 63.
    W. P. Bocchinfuso, W. P. Hively, H. E. Varmus, and K. S. Korach (1997). Mammary gland development and tumorigenesis in Wnt-1 transgenic mice lacking the estrogen receptor. (in preparation).Google Scholar
  64. 64.
    G. G. J. M. Kuiper, E. Enmark, M. Pelto-Huikko, S. Nilsson and J.-A. Gustafsson (1996). Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc. Natl. Acad. Sci. U.S.A. 93:5925–5930.PubMedGoogle Scholar
  65. 65.
    J. F. Couse, J. K. Lindzey, J.-A. Gustafsson, and K. S. Korach (1997). Tissue distribution and quantitative analysis of estrogen receptor-α (ERα) and estrogen receptor-β (ERβ) mRNA in the wild-type and ERa-knockout mouse. Endocrinology (in press).Google Scholar
  66. 66.
    K. S. Korach, V. L. Davis, S. W. Curtis, and W. P. Bocchinfuso (1997). Xenoestrogens and estrogen receptor action. In J. A. Thomas and H. D. Colby (eds.), Endocrine Toxicology, Taylor and Francis, Washington, pp. 181–211.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Wayne P. Bocchinfuso
    • 1
  • Kenneth S. Korach
    • 1
  1. 1.Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle Park

Personalised recommendations