Adaptations of Glucose Metabolism During Pregnancy and Lactation

  • Alan W. BellEmail author
  • Dale E. Bauman


Increased glucose requirements of the gravid uterus during late pregnancy and even greater requirements of the lactating mammary glands necessitate major adjustments in glucose production and utilization in maternal liver, adipose tissue, skeletal muscle, and other tissues. In ruminants, which at all times rely principally on hepatic gluconeogenesis for their glucose supply, hepatic glucose synthesis during late pregnancy and early lactation is increased to accommodate uterine or mammary demands even when the supply of dietary substrate is inadequate. At the same time, glucose utilization by adipose tissue and muscle is reduced. In pregnant animals, these responses are exaggerated by moderate undernutrition and are mediated by reduced tissue sensitivity and responsiveness to insulin, associated with decreased tissue expression of the insulin-responsive facilitative glucose transporter, GLUT4. Peripheral tissue responses to insulin remain severely attenuated during early lactation but recover as the animal progresses through mid lactation. Specific homeorhetic effectors of decreased insulin-mediated glucose metabolism during late pregnancy have yet to be conclusively identified. In contrast, somatotropin is almost certainly a predominant homeorhetic influence during lactation because its exogenous administration causes specific changes in glucose metabolism (and many other functions) of various nonmammary tissues which faithfully mimic normal adaptations to early lactation.

Pregnancy lactation glucose metabolism insulin responses homeorhesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. W. Bell (1995). Use of ruminants to study regulation of nutrient partitioning during pregnancy and lactation. In M. Ivan (ed.), Animal Science Research and Development: Moving Toward a New Century, Minister of Supply and Services Canada, Ottawa, pp. 41–62.Google Scholar
  2. 2.
    J. M. Elliot (1980). Propionate metabolism and vitamin B12. In Y. Ruckebusch and P. Thivend (eds.), Digestive Physiology and Metabolism in Ruminants, MTP Press, Lancaster, United Kingdom, pp. 485–503.Google Scholar
  3. 3.
    R. P. Brockman (1993). Glucose and short-chain fatty acid metabolism. In J. M. Forbes and J. France (eds.), Quantitative Aspects of Ruminant Digestion and Metabolism, CAB International, Wallingford, United Kingdom, pp. 247–265.Google Scholar
  4. 4.
    J. France and R. C. Siddons (1993). Volatile fatty acid production. In J. M. Forbes and J. France (eds.), Quantitative Aspects of Ruminant Digestion and Metabolism, CAB International, Wallingford, United Kingdom, pp. 107–121.Google Scholar
  5. 5.
    A. W. Bell (1981). Lipid metabolism in liver and selected tissues and in the whole body of ruminant animals. In W.W. Christie (ed.), Lipid Metabolism in Ruminant Animals, Pergamon Press, Oxford, United Kingdom, pp. 363–410.Google Scholar
  6. 6.
    D. E. Bauman and C. L. Davis (1975). Regulation of lipid metabolism. In I. W. McDonald and A. C. I. Warner (eds.), Digestion and Metabolism in the Ruminant, The University of New England Publishing Unit, Armidale, Australia, pp. 497–509.Google Scholar
  7. 7.
    E. N. Bergman, S. S. Reulein, and R. E. Corlett (1989). Effects of obesity on insulin sensitivity and responsiveness in sheep. Am. J. Physiol. 257:E772–E781.Google Scholar
  8. 8.
    J. A. Petterson, F. R. Dunshea, R. A. Ehrhardt, and A. W. Bell (1993). Pregnancy and undernutrition alter glucose metabolic responses to insulin in sheep. J. Nutr. 123:1286–1295.Google Scholar
  9. 9.
    I. G. Jarrett, O. H. Filsell, and F. J. Ballard (1974). Metabolic and endocrine interrelationships in normal and diabetic sheep. Horm. Metab. Res. 4:111–116.Google Scholar
  10. 10.
    R. G. Vernon and S. Sasaki (1991). Control of responsiveness of tissues to hormones. In T. Tsuda, Y. Sasaki, and R. Kawashima (eds.), Physiological Aspects of Digestion and Metabolism in Ruminants, Academic Press, New York, pp. 155–182.Google Scholar
  11. 11.
    J. M. Bassett (1975). Dietary and gastro-intestinal control of hormones regulating carbohydrate metabolism in ruminants. In I. W. McDonald and A. C. I. Warner (eds.), Digestion and Metabolism in the Ruminant, The University of New England Publishing Unit, Armidale, Australia, pp. 383–398.Google Scholar
  12. 12.
    W. W. Hay, Jr., J. W. Sparks, R. B. Wilkening, F. C. Battaglia, and G. Meschia (1983). Partition of maternal glucose production between conceptus and maternal tissues. Am. J. Physiol. 245:E347–E350.Google Scholar
  13. 13.
    B. J. Leury, A. R. Bird, K. C. Chandler, and A. W. Bell (1990). Glucose partitioning in the pregnant ewe: effects of undernutrition and exercise. Brit. J. Nutr. 64:449–462.Google Scholar
  14. 14.
    A. W. Bell, J. M. Kennaugh, F. C. Battaglia, E. L. Makowski, and G. Meschia (1986). Metabolic and circulatory studies of fetal lamb at midgestation. Am. J. Physiol. 250:E538–E544.Google Scholar
  15. 15.
    F. H. Morriss, Jr., C. R. Rosenfeld, R. Resnik, G. Meschia, E. L. Makowski, and F. C. Battaglia (1974). Growth of uterine oxygen and glucose uptakes during pregnancy in sheep. Gynecol. Invest. 5:230–241.Google Scholar
  16. 16.
    W. F. Widdas (1952). Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer. J. Physiol. 118:23–28.Google Scholar
  17. 17.
    M. A. Simmons, F. C. Battaglia, and G. Meschia (1979). Placental transfer of glucose. J. Develop. Physiol. 1:227–243.Google Scholar
  18. 18.
    R. A. Ehrhardt and A. W. Bell (1997). Developmental increases in glucose transporter concentration in the sheep placenta. Am. J. Physiol.(in press).Google Scholar
  19. 19.
    R. D. Molina, G. Meschia, F. C. Battaglia, and W. W. Hay, Jr. (1991). Gestational maturation of placental glucose transfer in sheep. Am. J. Physiol. 261:R697–R704.Google Scholar
  20. 20.
    J. Zhou and C. A. Bondy (1993). Placental glucose transporter gene expression and metabolism in the rat. J. Clin. Invest. 91:845–852.Google Scholar
  21. 21.
    S. Hauguel-De Mouzon, A. Leturque, E. Alsat, M. Loizeau, D. Evian-Brion and J. Girard (1994). Developmental expression of Glutl glucose transporter and c-fos genes in human placental cells. Placenta 15:35–46.Google Scholar
  22. 22.
    W. W. Hay, Jr., J. W. Sparks, M. Gilbert, F. C. Battaglia, and G. Meschia (1984). Effect of insulin on glucose uptake by the maternal hindlimb and uterus, and by the fetus in conscious pregnant sheep. J. Endocrinol. 100:119–124.Google Scholar
  23. 23.
    J. H. G. Rankin, G. Jodarski, and M. R. Shanahan (1986). Maternal insulin and placental 3-O-methyl glucose transport. J. Develop. Physiol. 8:247–253.Google Scholar
  24. 24.
    J. M. Bassett (1986). Nutrition of the conceptus: aspects of its regulation. Proc. Nutr. Soc. 45:1–10.Google Scholar
  25. 25.
    W. W. Hay, Jr., S. A. Myers, J. W. Sparks, R. B. Wilkening, G. Meschia, and F. C. Battaglia (1983). Glucose and lactate oxidation rates in the fetal lamb. Proc. Soc. Exp. Biol. Med. 173:553–563.Google Scholar
  26. 26.
    W. W. Hay, Jr., J. W. Sparks, R. B. Wilkening, F. C. Battaglia, and G. Meschia (1984). Fetal glucose uptake and utilization as functions of maternal glucose concentration. Am. J. Physiol. 246:E237–E242.Google Scholar
  27. 27.
    B. J. Leury, K. D. Chandler, A. R. Bird, and A. W. Bell (1990). Effects of undernutrition and exercise on glucose kinetics in fetal sheep. Brit. J. Nutr. 64:463–472.Google Scholar
  28. 28.
    J. E. DiGiacomo and W. W. Hay, Jr. (1990). Fetal glucose metabolism and oxygen consumption during sustained hypoglycemia. Metabolism 39:193–202.Google Scholar
  29. 29.
    M. Dalinghaus, C. D. Rudolph, and A. M. Rudolph (1991). Effects of maternal fasting on hepatic gluconeogenesis and glucose metabolism in fetal lambs. J. Develop. Physiol. 16:267–275.Google Scholar
  30. 30.
    J. A. Lemons and R. L. Schreiner (1983). Amino acid metabolism in the ovine fetus. Am. J. Physiol. 244:E459–E466.Google Scholar
  31. 31.
    J. C. Hodgson, D. J. Mellor, and A. C. Field (1982). Foetal and maternal rates of urea production and disposal in well-nourished and undernourished sheep. Brit. J. Nutr. 48:49–58.Google Scholar
  32. 32.
    C. R. Krishnamurti and A. L. Schaefer (1984). Effect of acute maternal starvation on tyrosine metabolism and protein synthesis in fetal sheep. Growth 48:391–403.Google Scholar
  33. 33.
    V. H. Oddy, J. M. Gooden, G. M. Hough, E. Teleni, and E. F. Annison (1985). Partitioning of nutrients in Merino ewes. II. Glucose utilization by skeletal muscle, the pregnant uterus and the lactating mammary gland in relation to whole body glucose utilization. Aust. J. Biol. Sci. 38:95–108.Google Scholar
  34. 34.
    R. A. Ehrhardt, R. C. Boston, R. M. Slepetis, and A. W. Bell (1996). Moderate maternal undernutrition elevates placental glucose transport capacity in sheep. J. Anim. Sci. 74(Suppl. 1):234.Google Scholar
  35. 35.
    J. W. Steel and R. A. Leng (1973). Effects of plane of nutrition and pregnancy on gluconeogenesis in sheep. I. The kinetics of glucose metabolism. Brit. J. Nutr. 30:451–473.Google Scholar
  36. 36.
    S. Wilson, J. C. MacRae, and P. J. Buttery (1983). Glucose production and utilization in non-pregnant, pregnant and lactating ewes. Brit. J. Nutr. 50:303–316.Google Scholar
  37. 37.
    J. W. Steel and R. A. Leng (1973). Effects of plane of nutrition and pregnancy on gluconeogenesis in sheep. II. Synthesis of glucose from ruminal propionate. Brit. J. Nutr. 30:475–489.Google Scholar
  38. 38.
    W. D. Steinhour and D. E. Bauman (1988). Propionate metabolism: a new interpretation. In A. Dobson and M. J. Dobson (eds.), Aspects of Digestive Physiology in Ruminants, Cornell University Press, Ithaca, New York, pp. 238–256.Google Scholar
  39. 39.
    E. F. Annison (1990). Aspects of quantitative animal nutrition. Schriftenreihe aus dem Institut fur Nutzierwissenschaften, Gruppe Ehrnahrung, ETH-Zurich, pp. 19–47.Google Scholar
  40. 40.
    A. W. Bell (1993). Pregnancy and fetal metabolism. In J. M. Forbes and J. France (eds.), Quantitative Aspects of Ruminant Digestion and Metabolism, CBA International, Wallingford, United Kingdom, pp. 405–431.Google Scholar
  41. 41.
    G. M. Hough, G. H. McDowell, E. F. Annison, and A. J. Williams (1985). Glucose metabolism in hindlimb muscle in pregnant and lactating ewes. Proc. Nutr. Soc. Aust. 10:53.Google Scholar
  42. 42.
    G. D. Baird, J. G. van der Walt, and E. N. Bergman (1983). Whole-body metabolism of glucose and lactate in productive sheep and cows. Brit. J. Nutr. 50:267–280.Google Scholar
  43. 43.
    R. G. Vernon, R. A. Clegg, and D. J. Flint (1981). Metabolism of sheep adipose tissue during pregnancy and lactation, Adaptation and regulation. Biochem. J. 200:307–314.Google Scholar
  44. 44.
    W. W. Hay, Jr., C.-C. Lin, and H. K. Meznarich (1988). Effect of high levels of insulin on glucose utilization and glucose production in pregnant and nonpregnant sheep. Proc. Soc. Exp. Biol. Med. 189:275–284.Google Scholar
  45. 45.
    C. R. Kahn (1978). Insulin resistance, insulin sensitivity, and insulin responsiveness: a necessary distinction. Metabolism 27:1893–1902.Google Scholar
  46. 46.
    P. Shepherd and B. Kahn (1993). Cellular defects in glucose transport: lessons from animal models and implications for human insulin resistance. In D. Moller (ed.), Insulin Resistance, John Wiley and Sons, Chichester, United Kingdom, pp. 253–281.Google Scholar
  47. 47.
    W. T. Garvey, L. Maianu, J.-H. Zhu, J. A. Hancock, and A. M. Golichowski (1993). Multiple defects in the adipocyte glucose transport system cause cellular insulin resistance in gestational diabetes. Heterogeneity in the number and a novel abnormality in subcellular localization of GLUT4 glucose transporters. Diabetes 42:1773–1785.Google Scholar
  48. 48.
    W. T. Garvey, L. Maianu, J. A. Hancock, A. M. Golichowski, and A. Baron (1992). Gene expression of GLUT4 in skeletal muscle from insulin-resistant patients with obesity, IGT, GDM, and NIDDM. Diabetes 41:465–475.Google Scholar
  49. 49.
    A. W. Bell (1995). Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J. Anim. Sci. 73:2804–2819.Google Scholar
  50. 50.
    A. J. Davis, I. R. Fleet, J. A. Goode, M. H. Hamon, F. M. Maule Walker, and M. Peaker (1979). Changes in mammary function at the onset of lactation in the goat: correlation with hormonal changes. J. Physiol. 288:33–44.Google Scholar
  51. 51.
    C. A. Baile, J. Mayer, A. W. Mahoney, and C. McLaughlin (1969). Hypothalamic hyperphagia in goats and some observations of its effect on glucose utilization rate. J. Dairy Sci. 52:101–109.Google Scholar
  52. 52.
    J. Y. F. Paterson and J. L. Linzell (1974). Cortisol secretion rate, glucose entry rate and mammary uptake of cortisol and glucose during pregnancy and lactation in dairy cows. J. Endocrinol. 62:371–383.Google Scholar
  53. 53.
    D. E. Bauman and J. M. Elliot (1983). Control of nutrient partitioning in lactating ruminants. In T. B. Mepham (ed.), Biochemistry of Lactation, Elsevier, Amsterdam, pp. 437–468.Google Scholar
  54. 54.
    R. R. Grummer (1995). Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. J. Anim. Sci. 73:2820–2833.Google Scholar
  55. 55.
    I. M. Reid, C. J. Roberts, and G. D. Baird (1980). The effects of underfeeding during pregnancy and lactation on structure and chemistry of bovine liver and muscle. J. Agric. Sci., Camb. 94:239–245.Google Scholar
  56. 56.
    R. W. Smith, R. A. Knight, and A. Walsh (1981). Effect of lactation on the concentrations of protein, lipids and nucleic acids in ovine skeletal muscle. Res. Vet. Sci. 30:253–254.Google Scholar
  57. 57.
    C. Champredon, E. Debras, P. P. Mirand, and M. Arnal (1990). Methionine flux and tissue protein synthesis in lactating and dry goats. J. Nutr. 120:1006–1015.Google Scholar
  58. 58.
    V. E. Baracos, J. Brun-Bellut, and M. Marie (1991). Tissue protein synthesis in lactating and dry goats. Brit. J. Nutr. 66:451–465.Google Scholar
  59. 59.
    Y. R. Boisclair, A. W. Bell, F. R. Dunshea, M. Harkins, and D. E. Bauman (1993). Evaluation of the arteriovenous difference technique to simultaneously estimate protein synthesis and degradation in the hindlimb of fed and chronically underfed steers. J. Nutr. 123:1076–1088.Google Scholar
  60. 60.
    J. W. Blum, T. Reding, F. Jans, M. Wanner, M. Zemp, and K. Bachmann (1985). Variations of 3-methylhistidine in blood of dairy cows. J. Dairy Sci. 68:2580–2587.Google Scholar
  61. 61.
    J. P. McNamara and J. K. Hillers (1986). Adaptations in lipid metabolism of bovine adipose tissue in lactogenesis and lactation. J. Lipid Res. 27:150–157.Google Scholar
  62. 62.
    R. G. Vernon and E. Taylor (1988). Insulin, dexamethasone and their interactions in the control of glucose metabolism in adipose tissue from lactating and non-lactating sheep. Biochem. J. 256:509–514.Google Scholar
  63. 63.
    L. A. Wilson, S. E. Mills, E. Finley, E. Kilgour, P. J. Buttery, and R. G. Vernon (1996). Effect of lactation on insulin signal transduction in sheep adipose tissue and skeletal muscle. J. Endocrinol. 151:469–480.Google Scholar
  64. 64.
    I. C. Hart, J. A. Bines, S. V. Morant, and J. L. Ridley (1978). Endocrine control of energy metabolism in the cow: comparison of the levels of hormones (prolactin, growth hormone, insulin and thyroxine) and metabolites in the plasma of high-and low-yielding cattle at various stages of lactation. J. Endocrinol. 77:333–345.Google Scholar
  65. 65.
    F.-Q. Zhao, W. M. Moseley, H. A. Tucker, and J. J. Kennelly (1996). Regulation of glucose transporter gene expression in mammary gland, muscle, and fat of lactating cows by administration of bovine growth hormone and bovine growth hormone-releasing factor. J. Anim. Sci. 74:183–189.Google Scholar
  66. 66.
    K. Hove (1978). Effects of hyperinsulinemia on lactose secretion and glucose uptake by the goat mammary gland. Acta Physiol. Scand. 104:422–430.Google Scholar
  67. 67.
    B. Laarveld, D. A. Christensen, and R. P. Brockman (1981). The effect of insulin on net metabolism of glucose and amino acids by the bovine mammary gland. Endocrinology 108:2217–2221.Google Scholar
  68. 68.
    A.-F. Burnol, A. Leturque, M. Loizeau, C. Postic, and J. Girard (1990). Glucose transporter expression in rat mammary gland. Biochem. J. 270:277–279.Google Scholar
  69. 69.
    D. J. Flint (1995). Hormonal regulation of uptake and metabolism of milk precursors in normal lactating mammary gland. J. Anim. Sci. 73(Suppl. 2):61–76.Google Scholar
  70. 70.
    M. C. Neville, V. S. Sawicki, and W. W. Hay, Jr. (1993). Effects of fasting, elevated plasma glucose and plasma insulin concentrations on milk secretion in women. J. Endocrinol. 139:165–173.Google Scholar
  71. 71.
    P. S. Miller, B. L. Reis, C. C. Calvert, E. J. DePeters, and R. L. Baldwin (1991). Patterns of nutrient uptake by the mammary glands of lactating dairy cows. J. Dairy Sci. 74:3791–3799.Google Scholar
  72. 72.
    M. Mueckler (1994). Facilitative glucose transporters. Eur. J. Biochem. 219:713–725.Google Scholar
  73. 73.
    N. J. Kuhn (1983). The biosynthesis of lactose. In T. B. Mepham (ed.), Biochemistry of Lactation, Elsevier, Amsterdam, pp. 159–176.Google Scholar
  74. 74.
    N. Chaiyabutr, A. Faulkner, and M. Peaker (1980). The utilization of glucose for the synthesis of milk components in the fed and starved lactating goat in vivo. Biochem. J. 186:301–308.Google Scholar
  75. 75.
    G. D. Baird, M. A. Lomax, H. W. Symonds, and S. R. Shaw (1980). Net hepatic and splanchnic metabolism of lactate, pyruvate and propionate in dairy cows in vivoin relation to lactation and nutrient supply. Biochem. J. 186:47–57.Google Scholar
  76. 76.
    E. Debras, J. Grizard, E. Aina, S. Tesseraud, C. Champredon, and M. Arnal (1989). Insulin sensitivity and responsiveness during lactation and dry period in goats. Am. J. Physiol. 256:E295–E302.Google Scholar
  77. 77.
    R. P. Brockman (1990). Effect of insulin on the utilization of propionate in sheep. Brit. J. Nutr. 64:95–101.Google Scholar
  78. 78.
    M. A. Lomax, G. D. Baird, C. B. Mallinson, and H. W. Symonds (1979). Differences between lactating and non-lactating dairy cows in concentration and secretion rate of insulin. Biochem. J. 180:281–289.Google Scholar
  79. 79.
    F. R. Dunshea, B. Crowe, T. E. Trigg, and A. W. Bell (1996). Relationships between in vivo and in vitro lipid metabolism in lactating goats. J. Anim. Sci. 74(Suppl. 1):145.Google Scholar
  80. 80.
    F. R. Dunshea, A. W. Bell, and T. E. Trigg (1990). Nonesterified fatty acid and glycerol kinetics and fatty acid reesterification in goats during early lactation. Brit. J. Nutr. 64:133–145.Google Scholar
  81. 81.
    P. W. Moe, H. F. Tyrrell, and W. P. Flatt (1971). Energetics of body tissue mobilization. J. Dairy Sci. 54:548–553.Google Scholar
  82. 82.
    R. G. Vernon, A. Faulkner, W. W. Hay, Jr., D. T. Calvert, and D. J. Flint (1990). Insulin resistance of hind-limb tissues in vivoin lactating sheep. Biochem. J. 270:783–786.Google Scholar
  83. 83.
    M. Balage, C. Sornet, and J. Grizard (1992). Insulin receptor binding and receptor tyrosine kinase activity in liver and skeletal muscles of lactating goats. Am. J. Physiol. 262:E561–E568.Google Scholar
  84. 84.
    W. B. Cannon (1929). Organization for physiological homeostasis. Physiol. Rev. 9:399–431.Google Scholar
  85. 85.
    C. Bernard (1878). Leçons sur les Phénomènes de la Vie Communs aux Animaux et aux Vé Bailleure, Paris.Google Scholar
  86. 86.
    D. E. Bauman, and W. B. Currie (1980). Partitioning of nutrients during pregnancy and lactation: a review of mechanisms involving homeostasis and homeorhesis. J. Dairy Sci. 63:1514–1529.Google Scholar
  87. 87.
    D. E. Bauman (1984). Regulation of nutrient partitioning. In F. M. C. Gilchrist and R. I. Mackie (eds.), Herbivore Nutrition in the Subtropics and Tropics, The Science Press, Craighall, South Africa, pp. 505–524.Google Scholar
  88. 88.
    R. G. Vernon (1988). The partition of nutrients during the lactation cycle. In P. C. Garnsworthy (ed.), Nutrition and Lactation in the Dairy Cow, Butterworths, London, pp. 32–52.Google Scholar
  89. 89.
    D. A. Green, D. R. Brink, M. L. Bauer, and T. J. Wester (1992). Estradiol-17β effects on lipid metabolism of adipose tissue in nutritionally induced lean and obese ovariectomized ewes. J. Anim. Sci. 70:2120–2129.Google Scholar
  90. 90.
    J. L. Andriguetto, R. Slepetis, and A. W. Bell (1996). Effect of estradiol-17β on metabolic responses to insulin in sheep. J. Anim. Sci. 74(Suppl. 1):234.Google Scholar
  91. 91.
    A. W. Bell and R. A. Ehrhardt (1997). Placental regulation of nutrient partitioning during pregnancy. In W. Hansel (ed.), Nutrition and Reproduction, LSU Press, Baton Rouge (in press).Google Scholar
  92. 92.
    D. E. Bauman and R. G. Vernon (1993). Effects of exogenous somatotropin on lactation. Ann. Rev. Nutr. 13:437–461.Google Scholar
  93. 93.
    F. R. Dunshea, Y. R. Boisclair, D. E. Bauman, and A. W. Bell (1995). Effects of bovine somatotropin and insulin on whole body and hindlimb glucose metabolism in growing steers. J. Anim. Sci. 73:2263–2271.Google Scholar
  94. 94.
    W. S. Cohick, R. Slepetis, M. Harkins, and D. E. Bauman (1989). Effects of exogenous bovine somatotropin (bST) on net fluxes of glucose and insulin across splanchnic tissues of lactating cows. FASEB J. 3:A938.Google Scholar
  95. 95.
    C. B. Gow, G. H. McDowell, and E. F. Annison (1981). Comparison of glucose biokinetics in parturient ewes and ewes induced to lactate artificially. Aust. J. Biol. Sci. 34:463–468.Google Scholar
  96. 96.
    L. A. Wilson, M. C. Barber, M. T. Travers, J. Soar, P. J. Buttery, and R. G. Vernon (1996). Effect of plane of nutrition and growth hormone treatment on insulin receptor gene expression and kinase activity of sheep muscle and adipose tissue. Biochem. Soc. Trans. 24:222S.Google Scholar
  97. 97.
    R. G. Vernon and S. Lindsay-Watt (1995). Possible role for PI3 kinase but not p70S6Kin regulation of lipogenesis by insulin and growth hormone in sheep adipose tissue. Biochem. Soc. Trans. 23:190S.Google Scholar
  98. 98.
    M. P. Czech (1995). Molecular actions of insulin on glucose transport. Ann. Rev. Nutr. 15:441–471.Google Scholar
  99. 99.
    M. Riddestrale and H. Tornquist (1994). PI-3-kinase inhibitor wortmannin blocks the insulin-like effects of growth hormone in isolated rat adipocytes. Biochem. Biophys. Res. Commun. 203:306–310.Google Scholar
  100. 100.
    G. H. McDowell, J. M. Gooden, D. Leenanuruksa, M. Jois, and A. W. English (1987). Effects of exogenous growth hormone on milk production and nutrient uptake by muscle and mammary tissues of dairy cows in mid-lactation. Aust. J. Biol. Sci. 40:295–306.Google Scholar
  101. 101.
    D. E. Bauman, C. J. Peel, W. D. Steinhour, P. J. Reynolds, H. F. Tyrrell, A. C. G. Brown, and G. L. Haaland (1988). Effect of bovine somatotropin on metabolism of lactating dairy cows: influence on rates of irreversible loss and oxidation of glucose and nonesterified fatty acids. J. Nutr. 118:1031–1040.Google Scholar
  102. 102.
    D. A. Fryburg, J. Louard, K. E. Gerow, R. A. Gelfand, and E. J. Barrett (1992). Growth hormone stimulates skeletal muscle protein synthesis and antagonizes insulin's antiproteolytic action in humans. Diabetes 41:424–429.Google Scholar
  103. 103.
    Y. R. Boisclair, D. E. Bauman, A. W. Bell, F. R. Dunshea, and M. Harkins (1994). Nutrient utilization and protein turnover in the hindlimb of cattle treated with bovine somatotropin. J. Nutr. 124:664–673.Google Scholar
  104. 104.
    C. R. Simmons, W. G. Bergen, M. J. Vandehaar, D. J. Sprecher, C. J. Sniffen, E. P. Stanisiewski, and H. A. Tucker (1994). Protein and fat metabolism in cows given Somavubove before parturition. J. Dairy Sci. 77:1835–1847.Google Scholar
  105. 105.
    M. A. McGuire, D. E. Bauman, D. A. Dwyer, and W. S. Cohick (1995). Nutritional modulation of the somatotropin/insulin-like growth factor system: response to feed deprivation in lactating cows. J. Nutr. 125:493–502.Google Scholar
  106. 106.
    C. J. Peel, T. J. Fronk, D. E. Bauman, and R. C. Gorewit (1982). Lactational response to exogenous growth hormone and abomasal infusion of a glucose-sodium caseinate mixture in high-yielding dairy cows. J. Nutr. 112:1770–1778.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  1. 1.Department of Animal ScienceCornell UniversityIthaca

Personalised recommendations