Skip to main content
Log in

Kinetics and mechanism of oxidation of hydroxylamine by tetrachloroaurate(III) ion

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The oxidation of H2NOH is first-order both in [NH3OH+] and [AuCl4 ]. The rate is increased by the increase in [Cl] and decreased with increase in [H+]. The stoichiometry ratio, Δ[NH3OH+]/Δ[AuCl4 ], is ≈1. The mechanism consists of the following reactions.

$$\begin{gathered} {\text{NH}}_{\text{3}} {\text{OH}}^{\text{ + }} \mathop \leftrightharpoons \limits^{K_{\text{a}} } {\text{NH}}_{\text{2}} {\text{OH}} + {\text{H}}^ + {\text{ (i)}} \hfill \\ {\text{AuCl}}_{\text{4}}^ - + {\text{NH}}_{\text{2}} {\text{OH}}\xrightarrow{k}{\text{AuCl}}_{\text{4}}^ - + {\text{HNO}} + {\text{2Cl}}^ - + 2{\text{H}}^ + {\text{ (ii)}} \hfill \\ {\text{AuCl}}_{\text{4}}^ - + {\text{NH}}_{\text{3}} {\text{OH}} + {\text{Cl}}^ - \xrightarrow{{k_1 }}{\text{AuCl}}_{\text{2}}^ - + {\text{HNO}} + 3{\text{Cl}}^ - + 3{\text{H}}^ + {\text{ (iii)}} \hfill \\ {\text{2HNO}}\xrightarrow{{{\text{fast}}}}{\text{N}}_{\text{2}} {\text{O + H}}_{\text{2}} {\text{O (iv) }} \hfill \\\end{gathered}$$

The rate law deduced from the reactions (i)–(iv) is given by Equation (v) considering that [H+] ≫ K a.

$$k_{{\text{obs}}} /[{\text{H}}_{\text{2}} {\text{NOH}}]_{\text{o}} = k_2 = (kK_{\text{a}} [{\text{H}}^ + ]^{ - 1} + k_1 [{\text{Cl}}^ - ]){\text{ (v)}}$$

The reaction (iii) is a combination of the following reactions:

$$\begin{gathered} {\text{NH}}_{\text{3}} {\text{OH}}^{\text{ + }} + {\text{AuCl}}_{\text{4}}^ - \xrightarrow{{{\text{fast}}}}\left[ {{\text{AuCl}}_{\text{4}}^ - ..{\text{NH}}_{\text{3}} {\text{OH}}^{\text{ + }} } \right]_{{\text{precursor}}}^\ddag {\text{ (a)}} \hfill \\ \left[ {{\text{AuCl}}_{\text{4}}^ - ..{\text{NH}}_{\text{3}} {\text{OH}}^{\text{ + }} } \right]_{{\text{precursor}}}^\ddag + {\text{Cl}}^ + \xrightarrow{{k_1 }}\left[ {{\text{Cl}}^ - \ldots {\text{AuCl}}_{\text{4}}^ - ..{\text{NH}}_{\text{3}} {\text{OH}}^{\text{ + }} } \right]_{{\text{succesor}}}^\ddag {\text{ (b)}} \hfill \\ \left[ {{\text{Cl}}^ - \ldots {\text{AuCl}}_{\text{4}}^ - ..{\text{NH}}_{\text{3}} {\text{OH}}^{\text{ + }} } \right]_{{\text{succesor}}}^\ddag \xrightarrow{{{\text{fast}}}}{\text{AuCl}}_{\text{2}}^ - + {\text{HNO}} + 3{\text{Cl}}^ - + 3{\text{H}}^ + {\text{ (c)}} \hfill \\\end{gathered}$$

The activation parameters for the reactions (ii) and (iii) are consistent with an outer-sphere electron transfer mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.K. Sengupta and B. Basu, Transition Met. Chem., 8, 6 (1983).

    Google Scholar 

  2. A.I. Vogel, A Textbook of Quantitative Inorganic Analysis, Longmans, London, 1986, p. 391.

    Google Scholar 

  3. Ms Rekha, A. Prakash and R.N. Mehrotra, Can. J. Chem., 71, 2164 (1991).

    Google Scholar 

  4. K.K. Sengupta, A. Sanyal and P.K. Sen, Transition Met. Chem., 19, 534 (1994).

    Google Scholar 

  5. F.H. Fry, G.A. Hamilton and J. Turkevich, Inorg. Chem., 5, 1943 (1966).

    Google Scholar 

  6. P.V.Z. Bekker and W. Robb, Inorg. Chim. Acta, 8, 849 (1972).

    Google Scholar 

  7. B.S. Maritz and R. Van Eldik, Inorg. Chim. Acta, 17, 21 (1976).

    Google Scholar 

  8. B.I. Peshchevitskii, V.I. Belevantsev and N.V. Kuvatova, Russ. J. Inorg. Chem. (Engl. Transl.), 16, 1007 (1971).

    Google Scholar 

  9. S. Dholiya, A. Prakash and R.N. Mehrotra, J. Chem. Soc., Dalton Trans., 819 (1992).

  10. B.S. Maritz and R. Van Eldik, J. Inorg. Nucl. Chem., 38, 1749 (1976).

    Google Scholar 

  11. B.S. Maritz and R. Van Eldik, J. Inorg. Nucl. Chem., 19, 1035 (1977).

    Google Scholar 

  12. B.S. Maritz and R. Van Eldik, J. Inorg. Nucl. Chem., 38, 1545 (1976).

    Google Scholar 

  13. W.J. Louw and W. Robb, Inorg. Chim. Acta, 3, 303 (1969).

    Google Scholar 

  14. K.G. Moodley and M.J. Nicol, J. Chem. Soc. Dalton Trans., 993 (1977).

  15. W. Robb. Inorg. Chem., 6, 382 (1967).

    Google Scholar 

  16. G. Natile, E. Bordignonand and L. Cattalini, Inorg. Chem., 15, 246 (1976).

    Google Scholar 

  17. H.G. Forsberg, B. Widdel and L.G. Erwall, J. Chem. Educ., 37, 44 (1960).

    Google Scholar 

  18. B. Goyal, A. Prakash and R.N. Mehrotra, Indian J. Chem., Sect. A, 38, 541 (1999).

    Google Scholar 

  19. R.N. Mehrotra and L.J. Kirschenbaum, Inorg. Chem., 28, 4327 (1989).

    Google Scholar 

  20. I. Kouadio, L.J. Kirschenbaum and R.N. Mehrotra, J. Chem. Soc., Dalton Trans., 1929 (1990).

  21. I. Kouadio, L.J. Kirschenbaum, R.N. Mehrotra and Y. Sun, J. Chem. Soc., Dalton Trans., 2123 (1990).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soni, V., Mehrotra, R.N. Kinetics and mechanism of oxidation of hydroxylamine by tetrachloroaurate(III) ion. Transition Metal Chemistry 28, 893–898 (2003). https://doi.org/10.1023/A:1026330125535

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026330125535

Keywords

Navigation