Skip to main content
Log in

A Geometrical Pore Model for Estimating the Microscopical Pore Geometry of Soil with Infiltration Measurements

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This paper presents a simple geometrical pore model designed to relate characteristic pore radii of the porous network of soils with macroscopic infiltration parameters. The model composed of a stack of spherical hollow elements is described with two radii values: the pore access radius and the actual pore radius. The model was compared to cylindrical pore models and its mathematical consistency was assessed. Soil sorptivity S and the second parameter A of the Philip infiltration equation (1957), have been determined by numerically simulated infiltration. A diagram and an empirical relation have been set in order to relate the pore access and pore radii to the infiltration parameters S and A. The consistency of the model was validated by comparing the predicted sorptivity and hydraulic conductivity values, with the widely used unsaturated soil hydraulic functions (van Genuchten, 1980). The model showed good agreement with experimental infiltration data, and it is therefore concluded that the use of a model with two radii improves the relation between microscopic pore size and macroscopic infiltration parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angulo-Jaramillo, R., Moreno, F., Clothier, B. E., Thony, J. L., Vachaud, G., Fernandez-Boy, E. and Cayuela, J. A.: 1997, Seasonal variation of hydraulic properties of soils measured using a tension disk infiltrometer, Soil. Sci. Soc. Am. J. 61, 27–32.

    Google Scholar 

  • Brooks, R. H. and Corey, A. T.: 1966, Properties of porous media affecting fluid flow, J. Irr. Drain. Div., Am. Soc. Civ. Eng. 96, 2535–2548.

    Google Scholar 

  • Case, C. M.: 1990, Rate of rise of liquid in capillary tube-revisited, Am. J. Phys. 58, 888–889.

    Google Scholar 

  • Case, C. M.: 1994, Physical Principles of Flow in Unsaturated Porous Media, Oxford University Press, New York, 374 pp.

    Google Scholar 

  • Carsel, R. F. and Parrish, R. S.: 1988, Developing joint probability distributions of soil water retention characteristics, Water Resour. Res. 24, 755–759.

    Google Scholar 

  • Chavetau, G.: 1965, Essai sur la loi de Darcy et les écoulements laminaires à perte de charge non-linéaire, Thèse Docteur-Ingénieur de l'Université de Toulouse.

  • Dullien, F. A. L.: 1979, Porous Media: Fluid Transport and Pore Structure, Academic Press, New York, 396 pp.

    Google Scholar 

  • Dullien, F. A. L., El-Sayed, M. S. and Batra, V. K.: 1977, Rate of capillary rise in porous media with non uniform pores, J. Colloids Interf. Sci. 60, 497–506.

    Google Scholar 

  • FAO, ISRIC and ISSS: 1994, Draft World Reference Base for Soil Resources, Wageningen.

  • Green, W. H. and Ampt, G. A.: 1911, Studies in soil physics. I. Flow of air and water through soils, J. Agric. Sci. 4, 1–24.

    Google Scholar 

  • Grismer, M. E.: 1986, Pore size distribution and infiltration, Soil Sci. 14, 249–260.

    Google Scholar 

  • Hammecker, C. and Jeannette, D.: 1994, Modelling the capillary imbibition kinetics in sedimentary rocks: role of petrographical features, Transp. Porous Media 17, 285–303.

    Google Scholar 

  • Hammecker, C., Mertz, J. D., Fischer, C. and Jeannette, D.: 1993, A geometrical model for numerical simulation of capillary imbibition in sedimentary rocks, Transp. Porous Media 12, 125–141.

    Google Scholar 

  • Hillel, D.: 1998, Environmental Soil Physics, Academic Press, San Diego, 771 pp.

    Google Scholar 

  • Kusakov, M. M. and Nekrasov, D. N.: 1966, Capillary hysteresis in the rise of wetting liquids in single capillaries and porous bodies, in: B.V. Deryagin (ed.), Research in Surface Forces, New York, pp. 193–202.

  • Leij, F. J., Alves, W. J., van Genuchten, M. T. and Williams, J. R.: 1996, The UNSODA Unsaturated Soil Hydraulic Database. United States Environmental Agency document EPA/600/R-96/095, 103 pp.

  • Levine, S., Lowndes, J. and Reed, P.: 1980, Two phase fluid flow and hysteresis in a periodic capillary tube, J. Colloid Interf. Sci. 77, 253–263.

    Google Scholar 

  • Marmur, A.: 1989, Capillary rise and hysteresis in periodic porous media, J. Colloid Interf. Sci. 127, 362–372.

    Google Scholar 

  • Marshall, T. J.: 1958, A relation between permeability and size distribution of pores, J Soil. Sci. 9, 1–8.

    Google Scholar 

  • Mualem, Y.: 1976, A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res. 12, 513–522.

    Google Scholar 

  • Musy, A. and Soutter, M.: 1991, Physique du sol. Presses Polytechniques et universitaires romandes (ed.), Lausanne, Switzerland.

  • Parlange, J. Y.: 1975, On solving the flow equation in unsaturated soils by optimization: Horizontal infiltration, Soil Sci. Soc. Am. Proc. 39, 415–418.

    Google Scholar 

  • Peiris, M. G. C. and Tenakone, K.: 1980, Rate of rise of liquid in a capillary tube, Am. J. Phys. 48, 415.

    Google Scholar 

  • Perroux, K. M. and White, I.: 1988, Design for disc permeameters, Soil. Sci. Soc. Am. J. 52, 1205–1215.

    Google Scholar 

  • Philip, J. R.: 1957, Theory of infiltration. 4. Sorptivity and algebraic infiltration equations, Soil Sci. 84, 257–264.

    Google Scholar 

  • Reynolds, W. D. and Elrick, D. E.: 1991, Determination of hydraulic conductivity using a tension infiltrometer, Soil. Sci. Soc. Am. J. 55, 633–639.

    Google Scholar 

  • Richards, L. A.: 1931, Capillary conduction of liquids in porous medias, Physics 1, 318–333.

    Google Scholar 

  • Smettem, K. R. J. and Clothier, B. E.: 1989, Measuring unsaturated sorptivity and hydraulic conductivity using multiple disc permeameters, J. Soil Sci. 40, 563–568.

    Google Scholar 

  • Thony, J. L., Vachaud, G., Clothier, B. E. and Angulo-Jaramillo, R.: 1991, Field measurements of the hydraulic properties of soil, Soil Tech. 4, 111–123.

    Google Scholar 

  • van Brakel, J.: 1975, Pore space models for transport phenomena in porous media. Review and evaluation with special emphasis on capillary transport, Powder Technol. 11, 205–236.

    Google Scholar 

  • van Genuchten, M. Th.: 1980, A closed form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J. 44, 892–898.

    Google Scholar 

  • van Genuchten. M. Th., Leij, F. J. and Yates, S. R.: 1991, The RETC code for quantifying the hydraulic functions of unsaturated soils, US Salinity Laboratory, US Dep. of Agric. Res. Serv., Riverside, CA.

    Google Scholar 

  • Vetterlein, E.: 1989, Bodenphysikalische Kennwerte für Substrat-Horizont-Gruppen, in: V. Koepke (ed.), Bodenwasserregulierung, Muncheberg, Germany.

    Google Scholar 

  • Warrick, A.W. and Broadbridge, P.: 1992, Sorptivity and macroscopic capillary length relationships, Water Resour. Res. 28, 427–431.

    Google Scholar 

  • Washburn, E. W.: 1921, The dynamics of capillary flow, Phys. Rev. 17, 273–283.

    Google Scholar 

  • Wind, G. P.: 1968, Capillary conductivity data estimated by a simple method, in: P. E. Rijtema and H. Wassink (eds), Water in the Unsaturated Zone, Proc. of the Wageningen Symposium, June 1966, IASH Gentbrugge/UNESCO Paris, Vol. 1, pp. 181–191.

    Google Scholar 

  • White, I. and Sully, M. J.: 1987, Macroscopic and microscopic capillary length and times scales from field infiltration, Water Resour. Res. 23, 1514–1522.

    Google Scholar 

  • Wooding, R. A.: 1968, Steady infiltration from a shallow circular pond, Water Resour. Res. 4, 1259–1273.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammecker, C., Barbiéro, L., Boivin, P. et al. A Geometrical Pore Model for Estimating the Microscopical Pore Geometry of Soil with Infiltration Measurements. Transport in Porous Media 54, 193–219 (2004). https://doi.org/10.1023/A:1026328706869

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026328706869

Navigation