Skip to main content
Log in

Size-Resolved Characterisation of Soluble Ions in the Particles in the Tropospheric Plume of Masaya Volcano, Nicaragua: Origins and Plume Processing

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

We present the first application of a multi-stage impactor to study volcanic particle emissions to the troposphere from Masaya volcano, Nicaragua. Concentrations of soluble SO4 2−,Cl, F, NO3 , K+, Na+,NH4 +, Ca2+ and Mg2+ were determined in 11 size bins from ∼0.07 μm to >25.5 μm. The near-source size distributions showed major modes at 0.5μm (SO4 2−, H+,NH4 +); 0.2 μm and 5.0 μm (Cl) and 2.0–5.0 μm(F). K+ and Na+ mirrored the SO4 2− size-resolvedconcentrations closely, suggesting that these were transported primarily asK2SO4 and Na2SO4 in acidic solution, while Mg2+ andCa2+ presented modes in both <1 μm and >1 μm particles. Changes in relative humidity were studied by comparing daytime (transparent plume) and night-time (condensed plume) results. Enhanced particle growth rates were observed in the night-time plume as well as preferential scavenging of soluble gases, such as HCl, by condensed water. Neutralisation of the acidic aerosol by background ammonia was observed at the crater rim and to a greater extent approximately 15 km downwind of the active crater. We report measurements of re-suspended near-source volcanic dust, which may form a component of the plume downwind. Elevated levels ofSO4 2−, Cl, F,H+, Na+, K+ and Mg2+ were observed around the 10 μm particle diameter in this dust. The volcanic SO4 2− flux leaving the craterwas ∼0.07 kg s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, A. G., Oppenheimer, C., Ferm, M., Baxter, P. J., Horrocks, L. A., Galle, B., McGonigle, A. J. S., and Duffell, H. J., 2002: Primary sulphate aerosol and associated emissions from Masaya volcano, Nicaragua, J. Geophys. Res. 107(D23), 4682, doi:10.1029/2002JD002120.

    Google Scholar 

  • Allen, A. G., Baxter, P. J., and Ottley, C. J., 2000: Gas and particle emissions from Soufriere Hills Volcano, Montserrat,West Indies: Characterization and health hazard assessment, Bull. Volcanol. 62, 8-19.

    Google Scholar 

  • Ammann, M., Hauert, R., Burtscher, H., and Siegmann, H. C. 1993: Photoelectric charging of ultra-fine volcanic aerosols: Detection of Cu(I) as a tracer of chlorides in Magmatic gases, J. Geophys. Res. 98(B1), 551-556.

    Google Scholar 

  • Ammann, M. and Burtscher, H., 1993: Aerosol dynamics and light-scattering properties of a volcanic plume, J. Geophys. Res. 98, 19705-19711.

    Google Scholar 

  • Andres, R. J. and Kasgnoc, A. D. 1998: A time-averaged inventory of subaerial volcanic sulfur emissions, J. Geophys. Res. 103, 25251-25261.

    Google Scholar 

  • Andres, R. J., Kyle, P. R., and Chuan, R. L., 1993: Sulphur dioxide, particle and elemental emissions from Mount Etna, Italy during July 1987, Geol. Rundschau. 82, 687-695.

    Google Scholar 

  • Baxter, P. J., Stoiber, R. E., and Williams, S. N., 1982: Volcanic gases and health: Masaya volcano, Nicaragua, Lancet 2, 150-151.

    Google Scholar 

  • Bergametti, G., Martin, D., Carbonnelle J., Faivre-Pierret, R., and Vie Le Sage, R., 1984: A mesoscale study of the elemental composition of aerosol emitted from Mt Etna volcano, Bull. Volcanol. 47(2), 1107-1114.

    Google Scholar 

  • Berresheim, H. and Jaeschke, W., 1986: Study of metal aerosol systems as a sink for atmospheric SO2, J. Atmos. Chem. 4, 311-334.

    Google Scholar 

  • Burton M. R., Oppenheimer, C., Horrocks, L. A., and Francis P. W., 2001: Diurnal changes in volcanic plume chemistry observed by lunar and solar occultation spectroscopy, Geophys. Res. Lett. 28(5), 843-846.

    Google Scholar 

  • Chin, M. and Jacob, D. J., 1996: Anthropogenic and natural contributions to tropospheric sulfate: A global model analysis, J. Geophys. Res. 101, 18691-18699.

    Google Scholar 

  • Chuan, R. L., Palais, J., and Rose, W. I., 1986: Fluxes, sizes, morphology and compositions of particles in the Mt Erebus Volcanic Plume, December 1983, J. Atmos. Chem. 4, 467-477.

    Google Scholar 

  • Clegg, S. L., Brimblecombe, P., and Wexler A. S., 1998: Thermodynamic model of the system H+-NH +4 -Na+-SO 2–4 -NO 3 -Cl--H2O at 298.15 K, J. Phys. Chem. A 102, 2155-2171.

    Google Scholar 

  • Delmelle, P., Stix, J., Baxter, P. J., Garcia-Alvarez, J., and Barquero J., 2002: Atmospheric dispersion, environmental effects and potential health hazard associated with the low-altitude gas plume of Masaya volcano, Nicaragua, Bull. Volcanol. 64, 423-434.

    Google Scholar 

  • Delmelle, P., Stix, J., Bourque, C. P.-A., Baxter, P. J., Garcia-Alvarez, J., and Barquero J, 2001: Dry deposition and heavy acid loading in the vicinity of Masaya volcano, a major sulfur and chlorine source in Nicaragua, Environ. Sci. Technol. 35, 1289-1293.

    Google Scholar 

  • Duffell, H. J., Oppenheimer, C., Pyle, D.M., Galle, B., McGonigle, A. J. S., and Burton, M. R., 2003: Changes in gas composition prior to a minor explosive eruption at Masaya volcano, Nicaragua, J. Volcanol. Geotherm. Res. 126, 327-339.

    Google Scholar 

  • Duffell, H. J., Oppenheimer, C., and Burton, M., 2001: Volcanic gas emission rates measured by solar occultation spectroscopy, Geophys. Res. Lett. 28, 3131-3134.

    Google Scholar 

  • Eatough, D. J., Caka F. M., and Farber R. J., 1994: The conversion of SO2 to sulfate in the atmosphere, Israel J. Chem. 34, 301-314.

    Google Scholar 

  • Graf, H.-F., Feichter, J., and Langmann B., 1997: Volcanic sulfur emissions: Estimates of source strength and its contribution to the global sulfate burden, J. Geophys. Res. 102(D9), 10727-10738.

    Google Scholar 

  • Halmer, M. M., Schmincke, H.-U., and Graf, H. F., 2002: The annual volcanic gas input into the atmosphere, in particular into the stratosphere: A global data set for the past 100 years, J. Volcanol. Geotherm. Res. 115, 511-528.

    Google Scholar 

  • Heymsfield, A. J., 1993: Microphysical structures of stratiform and cirrus clouds, in P. V. Hobbs (ed.), Aerosol-Cloud-Climate Interactions, Academic Press, San Diego, pp. 97-121.

    Google Scholar 

  • Hobbs, P. V., Radke, L. F., Lyons, J. H., Ferek, R.J., and Coffman, D. J., 1991: Airborne measurements of particles and gas emissions from the 1990 volcanic eruptions of Mount Redoubt, J. Geophys. Res. 96, 18735-18752.

    Google Scholar 

  • Hobbs, P. V., Tuell, J. P., Hegg, D. A., Radke, L. F., and Eltgroth M. K., 1982: Particles and gases in the emissions from the 1980-1981 volcanic eruptions of Mt St Helens, J. Geophys. Res. 87, 11062-11086.

    Google Scholar 

  • Horrocks, L. A., Oppenheimer, C., Burton, M. R., and Duffell, H. J., 2003: Compositional variation in tropospheric volcanic gas plumes: Evidence from ground-based remote sensing, in C. Oppenheimer, D.M. Pyle, and J. Barclay, (eds), Volcanic Degassing, Geol. Soc. London Spec. Pub., 213, 349-369.

    Google Scholar 

  • Horrocks, L., Burton, M., Francis, P., and Oppenheimer, C., 1999: Stable gas plume composition measured by OP-FTIR spectroscopy at Masaya volcano, Nicaragua, 1998-1999, Geophys. Res. Lett. 26(23), 3497-3500.

    Google Scholar 

  • Johnson, N. and Parnell, R. A., 1986: Composition, distribution and neutralization of ‘acid rain’ derived from Masaya volcano, Nicaragua, Tellus 38B, 106-117.

    Google Scholar 

  • Kärcher, B., Hirschberg, M. M., and Fabian P., 1996: Small-scale chemical evolution of aircraft exhaust species at cruising altitudes, J. Geophys. Res. 101(D10), 15169-15190.

    Google Scholar 

  • Mannino, D. M., Ruben, S., Holschuh, F. C., Holschuh, T. C., Wilson, M. D., and Holschuh T., 1996: Emergency department visits and hospitalizations for respiratory disease on the island of Hawaii, 1981 to 1991, Hawaii Med. J. 55, 3, 48-53.

    Google Scholar 

  • Martin, D., Ardouin, B., Bergametti, G., Carbonelle, J., Faivre-Pierret, R., Lambert, G., Le Cloarec, M. F., and Sennequier G., 1986: Geochemistry of sulfur in Mount Etna Plume, J. Geophys. Res. 91(B12), 12249-12254.

    Google Scholar 

  • Mather, T. A., Pyle, D.M., and Oppenheimer, C., 2003: Tropospheric volcanic aerosol, in A. Robock and C. Oppenheimer (eds), Volcanism and the Earth's Atmosphere, Geophysical Monograph, in press.

  • McGonigle, A. J. S., Oppenheimer, C., Galle, B., Mather, T. A., and Pyle, D. M., 2002: Walking traverse and scanning DOAS measurements of volcanic gas emission rates, Geophys. Res. Lett. 29(20), 1985, doi:10.1029/2002GL015827.

    Google Scholar 

  • Métrich, N., Bonnin-Mosbah, M., Susini, J., Menez, B., and Galoisy, L., 2002: Presence of sulfite (SIV) in arc magmas: Implications for volcanic sulfur emissions, Geophys. Res. Lett. 29(11), doi:10.1029/2001GL014607.

  • Möller D., 1980: Kinetic model of atmospheric SO2 oxidation based on published data, Atmos. Environ. 14, 1067-1076.

    Google Scholar 

  • Murata K., 1960: Occurrence of CuCl emission in volcanic flames, Am. J. Sci. 258, 769-782.

    Google Scholar 

  • Oppenheimer, C., Francis, P., and Stix, J., 1998: Depletion rates of sulfur dioxide in tropospheric volcanic plumes, Geophys. Res. Lett. 25, 2671-2674.

    Google Scholar 

  • Pacyna J. M., 1998: Source inventories for atmospheric trace metals, in R. M. Harrison and R. E. van Grieken (eds), Atmospheric Particles, IUPAC Series on Analytical and Physical Chemistry of Environmental Systems, Vol. 5., Wiley, Chichester, U.K., pp. 385-423.

    Google Scholar 

  • Raga, G. B., Kok, G. L., Baumgardner, D., Baez, A., and Rosas, I., 1999: Evidence for volcanic influence on Mexico City aerosols, Geophys. Res. Lett. 26, 1149-1152.

    Google Scholar 

  • Read, W. G., Froidevaux, L., and Waters, L., 1993: Microwave limb sounder measurement of stratospheric SO2 from the Mt Pinatubo volcano, Geophys. Res. Lett. 20(12), 1299-1302.

    Google Scholar 

  • Robock, A., 2002: Pinatubo eruption - The climatic aftermath, Science 295, 1242-1244.

    Google Scholar 

  • Robock, A., 2000: Volcanic eruptions and climate, Rev. Geophys. 38, 191-219.

    Google Scholar 

  • Rose, W. I., Chuan, R. L., Giggenbach, W. F., Kyle, P. R., and R. B. Symonds, 1986: Rates of sulfur dioxide and particle emissions from White Island volcano, New Zealand, and an estimate of the total flux of major gaseous species, Bull. Volcanol. 48, 181-188.

    Google Scholar 

  • Sander R., 1994: Modellierung von chemischen Vorgängen an und inWolken, PhD Thesis, Johannes Gutenberg-Universität, Mainz.

    Google Scholar 

  • Seinfeld, J. H. and Pandis, S. N., 1998: Atmospheric Chemistry and Physics, John Wiley and Sons, New York.

    Google Scholar 

  • Stevenson, D. S., Johnson, C. E., Collins, W. J., and Derwent, R. G., 2003: The tropospheric sulphur cycle and the role of volcanic SO2, in C. Oppenheimer, D.M. Pyle, and J. Barclay (eds), Volcanic Degassing, Geol. Soc. London Spec. Pub., 213, 295-305.

    Google Scholar 

  • Stoiber, R. E., Williams, S. N., and Huebert, B., 1987: Annual contribution of sulfur dioxide to the atmosphere by volcanoes, J. Volcanol. Geotherm. Res. 33, 1-8.

    Google Scholar 

  • Stoiber, R. E., Williams, S. N., and Huebert, B. J., 1986: Sulfur and halogen gases at Masaya caldera complex, Nicaragua: Total flux and variations with time, J. Geophys. Res. 91(B12), 12215-12231.

    Google Scholar 

  • Symonds, R. B., Reed, M. H., and Rose, W. I., 1992: Origin, speciation, and fluxes of trace-element gases at Augustine volcano, Alaska: Insights into magma degassing and fumarolic processes, Geochim. Cosmochim. Acta 56, 633-657.

    Google Scholar 

  • Symonds, R. B., Rose, W. I., Reed, M. H., Lichte, F. E., and Finnegan, D. L., 1987: Volatilization, transport and sublimation of metallic and non-metallic elements in high temperature gases at Merapi Volcano, Indonesia, Geochim. Cosmochim. Acta 51, 2083-2101.

    Google Scholar 

  • Textor, C., Graf, H.-F., Herzog, M., and Oberhuber, J. M., 2003: Injection of gases into the stratosphere by explosive volcanic eruptions, J. Geophys. Res., in press.

  • Toutain, J.-P., Quisefit, J.-P., Briole, P., Aloupogiannis, P., Blanc, P., and Robaye, G., 1995: Mineralogy and chemistry of solid aerosols emitted from Mount Etna, Geochem. J. 29, 163-173.

    Google Scholar 

  • Varekamp, J. C., Thomas, E., Germani, M., and Buseck, P. R., 1986: Particle geochemistry of volcanic plumes of Etna and Mount St Helens, J. Geophys. Res. 91, 12233-12248.

    Google Scholar 

  • Whitby, K. T., 1978: The physical characteristics of sulfur aerosols, Atmos. Env. 12, 135-159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mather, T.A., Allen, A.G., Oppenheimer, C. et al. Size-Resolved Characterisation of Soluble Ions in the Particles in the Tropospheric Plume of Masaya Volcano, Nicaragua: Origins and Plume Processing. Journal of Atmospheric Chemistry 46, 207–237 (2003). https://doi.org/10.1023/A:1026327502060

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026327502060

Navigation