Expression, Purification, Characterization, and X-Ray Analysis of Selenomethionine 215 Variant of Leukocyte Collagenase

Abstract

Matrix metalloproteinases belong to the superfamily of metzincins containing, besides a similar topology and a strictly conserved zinc environment, a 1,4-tight turn with a strictly conserved methionine residue at position three (the so called Met-turn [Bode et al. (1993) FEBS 331, 134–140; Stöcker et al. (1995) Protein Sci. 4, 823–840]. The distal S–CH3 moiety of this methionine residue forms the hydrophobic basement of the three His residues liganding the catalytic zinc ion. To assess the importance of this methionine, we have expressed the catalytic domain of neutrophil collagenase (rHNC, residues Met80–Gly242) in the methionine auxotrophic Escherichia coli strain B834[DE3](hsd metB), with the two methionine residues replaced by Selenomethionine. Complete replacement was confirmed by amino acid analysis and electrospray mass spectrometry. The folded and purified enzyme retained its catalytic activity, but showed modifications which are reflected in changed kinetic parameters. The Met215SeMet substitution caused a decrease in conformational stability upon urea denaturation. The X-ray crystal structure of this Selenomethionine rHNC was virtually identical to that of the wild-type catalytic domain except for a very faint local disturbance around the sulfur-seleno substitution site.

This is a preview of subscription content, log in to check access.

REFERENCES

  1. Baumann, U., Wu, S., Flaherty, K. M., and McKay, D. B. (1993). EMBO J. 12, 3357–3364.

    Google Scholar 

  2. Beiboer, S. H. W., Van den Berg, D., Dekker, N., Cox, R. C., and Verheij, H. M. (1996). Protein Eng. 9, 345–352.

    Google Scholar 

  3. Bernhard, A. R., Wells, R. N. C., Cleasby, A., Borlat, F., Payton, M. A., and Proudfoot, A. E. I. (1995). Eur. J. Biochem. 230, 111–118.

    Google Scholar 

  4. Bode, W., Gomis-Rüth, F.-X., and Stöcker, W. (1993). FEBS 331, 134–140.

    Google Scholar 

  5. Bode, W., Reinemer, P., Huber, R., Kleine, T., Schnierer, S., and Tschesche, H. (1994). EMBO 13, 1263–1269.

    Google Scholar 

  6. Boles, J. O., Cisneros, R. J., Weir, M. S., Odom, J. D., Villafranca, J. E., and Dunlap, R. B. (1991). Biochemistry 30, 11073–11080.

    Google Scholar 

  7. Boles, J. O., Tolleson, W. H., Schmidt, J. C., Dunlap, R. B., and Odom, J. D. (1992). J. Biol. Chem. 267, 22217–22223.

    Google Scholar 

  8. Brünger, A. T. (1991). Curr. Opin. Struct. Biol. 1, 1016–1022.

    Google Scholar 

  9. Budisa, N., Steipe, B., Demange, P., Eckerskorn, C., Kellermann, J., and Huber, R. (1995). Eur. J. Biochem. 230, 788–796.

    Google Scholar 

  10. CCP4. (1994). Acta Crystallogr. D 50, 760–763.

    Google Scholar 

  11. Cornish-Bowden, A., and Eisenthal, R. (1978). Biochem. Biophys. Acta 523, 268–272.

    Google Scholar 

  12. Covey, T. R., Bonner, R. F., Shushan, B. I., and Henion, J. D. (1988). Rapid Commun. Mass. Spectrom. 2, 249–256.

    Google Scholar 

  13. Cowie, D. B., and Cohen, G. N. (1957). Biochim. Biophys. Acta 26, 252–261.

    Google Scholar 

  14. Engh, R. A., and Huber, R. (1991). Acta Crystallogr. A 47, 392–400.

    Google Scholar 

  15. Frank, P., Licht, A., Tullis, T. B. D., Hodgson, K. O., and Pecht, I. (1985). J. Biol. Chem. 260, 5518–5525.

    Google Scholar 

  16. Gellman, S. H. (1991). Biochemistry 30, 6633–6636.

    Google Scholar 

  17. Gill, S. C., and von Hippel, P. H. (1989). Analyt. Biochem. 182, 319–326.

    Google Scholar 

  18. Hädener, A., Matzinger, P. K., Malashkevich, V. M., Louie, G. V., Wood, S. P., Oliver, P., Alefounder, P. R., Pitt, A. R., Abell, C., and Battersby, A. R. (1993). Eur. J. Biochem. 211, 615–624.

    Google Scholar 

  19. Hendrickson, W. A., Horton, J. R., and LeMaster, D. M. (1990). EMBO 9, 1665–1672.

    Google Scholar 

  20. Huber, R. E., and Criddle, R. S. (1967). Biochim. Biophys. Acta 141, 587–599.

    Google Scholar 

  21. Kleine, T., Bartsch, S., Bläser, J., Schnierer, S., Triebel, S., Valentin, M., Gote, T., and Tschesche, H. (1993). Biochemistry 32, 14125–14131.

    Google Scholar 

  22. Knight, C. G., Willenbrock, F., and Murphy, G. (1992). FEBS 296, 263–266.

    Google Scholar 

  23. Kraulis, P. J. (1991). J. Appl. Crystallogr. 24, 946–950.

    Google Scholar 

  24. Laemmli, U. K. (1970). Nature 227, 680–685.

    Google Scholar 

  25. Leslie, A. G. W. (1991). In Crystallographic Computering V (Moras, D., Podjarny, A. D., and Thierry, J. C.,, eds), Oxford University Press, Oxford, pp. 27–38.

    Google Scholar 

  26. Mann, M., and Wilm, M. (1995). TIBS 20, 219–224.

    Google Scholar 

  27. Mann, M., Meng, C. K., and Fenn, J. A. (1989). Anal. Chem. 61, 1702–1708.

    Google Scholar 

  28. Matrisian, L. M. (1990). TIG 6, 121–125.

    Google Scholar 

  29. Moore, W. M., and Spilburg, C. A. (1986). Biochemistry 25, 5189–5195.

    Google Scholar 

  30. Murphy, G., and Docherty, A. J. P. (1992). Am. J. Cell. Biol. 7, 120–125.

    Google Scholar 

  31. O'Neil, K. T., and DeGrado, W. F. (1990). TIBS 15, 59–64.

    Google Scholar 

  32. Pace, C. N. (1986). Meth. Enzymol. 131, 266–280.

    Google Scholar 

  33. Pace, C. N., Shirley, B. A., and Thomson, J. A. (1989). In Protein Structure: A Practical Approach (Creighton, T. E., ed.), IRL, pp. 311–330.

  34. Puente, X. S., Pendas, A. M., Leano, E., Velasco, G., and Lopez-Otin, C. (1996). Cancer Res. 56, 944–949.

    Google Scholar 

  35. Qoronfleh, M. W., Ho, T. F., Brake, P. G., Banks, T. M., Pulvino, T. A., Wahl, R. C., Eshraghi, J., Chowdhury, S. K., Ciccarelli, R. B., and Jones, B. N. (1995). J. Biotech. 39, 119–128.

    Google Scholar 

  36. Reinemer, P., Grams, F., Huber, R., Kleine, T., Schnierer, S., Pieper, M., Tschesche, H., and Bode, W. (1994). FEBS 338, 227–233.

    Google Scholar 

  37. Richards, F. M., and Lim, W. A. (1994). Q. Rev. Biophys. 26, 423–498.

    Google Scholar 

  38. Ries, C., and Petrides, P. E. (1995). Biol. Chem. Hoppe-Seyler 376, 345–355.

    Google Scholar 

  39. Rose, G. D., Geselowitz, A. R., Lesser, G. J., Lee, R. H., and Zehfus, M. H. (1985). Science 229, 834–838.

    Google Scholar 

  40. Sandberg, W. S., and Terwilliger, T. C. (1989). Science 245, 54–57.

    Google Scholar 

  41. Sanger, F., Nicklen, S., and Coulson, A. R. (1977). Proc. Natl. Acad. Sci. USA 74, 5463–5467.

    Google Scholar 

  42. Sato, H., Takino, T., Okada, Y., Cao, J., Shinagawa, A., Yamamoto, E., and Seiki, M. (1994). Nature 370, 61–65.

    Google Scholar 

  43. Schnierer, S., Kleine, T., Gote, T., Hillemann, A., Knäuper, V., and Tschesche, H. (1993). Biochem. Biophys. Res. Commun. 191, 319–326.

    Google Scholar 

  44. Stöcker, W., Grams, F., Baumann, U., Reinemer, P., Gomis-Rüth, F.-X., McKay, D. B., and Bode, W. (1995). Protein Sci. 4, 823–840.

    Google Scholar 

  45. Studier, F. W., and Moffat, B. (1986). J. Mol. Biol. 189, 113–130.

    Google Scholar 

  46. Studier, W. F., Rosenberg, A. H., Dunn, J. J. and Durbendorff, A. (1990). Methods Enzymol. 185, 60–89.

    Google Scholar 

  47. Studier, F. W., et al. 1990.

  48. Takino, T., Sato, H., Shinagawa, A., and Seiki, M. (1995). J. Biol. Chem. 270, 23013–23020.

    Google Scholar 

  49. Wallace, C. J. A., and Clark-Lewis, I. (1992). J. Biol. Chem. 267, 3852–3861.

    Google Scholar 

  50. Will, B., and Hinzmann, B. (1995). Eur. J. Biochem. 231, 602–608.

    Google Scholar 

  51. Woessner, J. F., Jr. (1991). FASEB J. 5, 2145–2154.

    Google Scholar 

  52. Yang, W., Hendrickson, W. A., Crouch, R. J., and Satow, Y. (1990). Science 249, 1398–1405.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Harald Tschesche.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pieper, M., Betz, M., Budisa, N. et al. Expression, Purification, Characterization, and X-Ray Analysis of Selenomethionine 215 Variant of Leukocyte Collagenase. J Protein Chem 16, 637–650 (1997). https://doi.org/10.1023/A:1026327125333

Download citation

  • Matrix metalloproteinases
  • Met-turn
  • Selenomethionine
  • conformational stability
  • X-ray crystallography