Skip to main content
Log in

Body size and substrate association of littoral insects in relation to vegetation structure

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Variation in substrate association types and maximum size of aquatic insects were studied in a vegetated littoral zone of three lake basins. The basins differed from each other in trophic status, biomass of benthivorous fish, and abundance of macrophytes. Four types of substrate association – swimmers, crawlers, semisessiles and burrowers, respectively – were assumed to represent decreasing vulnerability to fish predators. Large-sized species were also hypothesised to be more vulnerable to fish predators. The distributions of species traits were examined in relation to vegetation density. Inferring from ``predation hypothesis'' opposite selection pressures on the species traits were expected along the vegetation density. Dense macrophyte beds were thought to be dominated by invertebrate predators and open water by fish predators, since the predation efficiency of fish decreases in complex environments. In the case of invertebrate predator domination, large size and higher activity should be favoured traits among the prey species. Distribution patterns of modes of the two studied traits were explored separately for predatory and non-predatory insects. As expected, swimmers and large-sized crawlers were characteristic of the insect assemblages of dense macrophyte beds. The densities of Odonata, Corixidae, Dytiscidae, Ephemeroptera and Sialidae were higher among macrophytes than in open water, where these insect taxa were possibly depleted by fish. On the other hand, the small-sized and fairly immobile Chironomidae were the most abundant group in open water. These results support the existence of a predator transition zone among littoral vegetation, ranging from domination of invertebrate predation among the dense beds to that of fish predation in open water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, J. D., A. S. Flecker, & N. L. McClintock, 1987. Prey preference of stoneflies: sedentary vs. mobile prey. Oikos 49: 323–331.

    Google Scholar 

  • Andrews, D. & F. H. Rigler, 1985. The effects of an Arctic winter on benthic invertebrates in the littoral zone of Char Lake, Northwest Territories. Can. J. Zool. 63: 2825–2834.

    Google Scholar 

  • Beckett, D. C., T. P. Aartila & A. C. Miller, 1992. Contrasts in density of benthic invertebrates between macrophyte beds and open littoral patches in Eau Galle Lake, Wisconsin. Am. midl. Nat. 127: 77–90.

    Google Scholar 

  • Bechara, J. A., G. Moreau & L. Haré, 1993. The impact of brook trout (Salvelinus fontinalis) on an experimental stream benthic community: the role of spatial and size refugia. J. anim. Ecol. 62: 451–464.

    Google Scholar 

  • Bendell, B. E. & D. K. McNicol, 1987. Fish predation, lake acidity and the composition of aquatic insect assemblages. Hydrobiologia 150: 193–202.

    Google Scholar 

  • Bendell, B. E. & D. K. McNicol, 1995. Lake acidity, fish predation, and the distribution and abundance of some littoral insects. Hydrobiologia 302: 133–145.

    Google Scholar 

  • Bergman, E., 1991. Changes in abundance of two percids, Perca fluviatilis and Gymnocephalus cernuus, along a productivity gradient: relations to feeding strategies and competitive abilities. Can. J. Fish. aquat. Sci. 48: 536–545.

    Google Scholar 

  • Blois-Heulin, C., P. H. Crowley, M. Arrington & D. M. Johnson, 1990. Direct and indirect effects of predators on the dominant invertebrates of two freshwater littoral communities. Oecologia 84: 295–306.

    Google Scholar 

  • Blumenshine, S. C., D. M. Lodge & J. R. Hodgson, 2000. Gradient of fish predation alters body size distribution of lake benthos. Ecology 81: 374–386.

    Google Scholar 

  • Brabrand, Å., 1985. Food of roach (Rutilus rutilus) and ide (Leuciscus idus): significance of diet shift for interspecific competition in omnivorous fishes. Oecologia 66: 461–467.

    Google Scholar 

  • Brett, M. T., 1989. The distribution of free-swimming macroinvertebrates in acidic lakes of Maine: the role of fish predation. Aqua Fenn. 19: 113–118.

    Google Scholar 

  • Cardinale, B. J., T. M. Burton & V. J. Brady, 1997. The community dynamics of epiphytic midge larvae across the pelagiclittoral interface: do animals respond to changes in the abiotic environment? Can. J. Fish. aquat. Sci. 54: 2314–2322.

    Google Scholar 

  • Cardinale, B. J., V. J. Brady & T. M. Burton, 1998. Changes in the abundance and diversity of coastal wetland fauna from the open water/macrophyte edge towards shore. Wetlands Ecol. Manage. 6: 59–68.

    Google Scholar 

  • Chevenet, F., S. Dolédec & D. Chessel, 1994. A fuzzy coding approach for the analysis of long-term ecological data. Freshwat. Biol. 31: 295–309.

    Google Scholar 

  • Cleveland, W. S., 1979. Robust locally weighted regression and smoothing scatterplots. J. am. Statist. Ass. 74: 829–836.

    Google Scholar 

  • Corbet, P. S., 1980. Biology of Odonata. Ann. Rev. Entomol. 25: 189–217.

    Google Scholar 

  • Crowder, L. B. & W. E. Cooper, 1982. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63: 1802–1813.

    Google Scholar 

  • Cyr, H., R. H. Peters & J. A. Downing, 1997. Population density and community size structure: comparison of aquatic and terrestrial systems. Oikos 80: 139–149.

    Google Scholar 

  • Diehl, S., 1988. Foraging efficiency of three freshwater fish: effects of structural complexity and light. Oikos 53: 207–214.

    Google Scholar 

  • Diehl, S., 1992. Fish predation and benthic community structure: the role of omnivory and habitat complexity. Ecology 73: 1646– 1661.

    Google Scholar 

  • Diehl, S. & P. Eklöv, 1995: Effects of piscivore-mediated habitat use on resources, diet and growth of perch. Ecology 76: 1712–1726.

    Google Scholar 

  • Diehl, S. & R. Kornijów, 1998. Influence of submerged macrophytes on trophic interactions among fish and macroinvertebrates. In: Jeppesen, E., Ma. Søndergaard, Mo. Søndergaard & K. Christoffersen, (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 24–46.

    Google Scholar 

  • Eklöv, P., 1997. Effects of habitat complexity and prey abundance on the spatial and temporal distributions of perch (Perca fluviatilis) and pike (Esox lucius). Can. J. Fish. aquat. Sci. 54: 1520–1531.

    Google Scholar 

  • Eklöv, P. & S. F. Hamrin, 1989. Predatory efficiency and prey selection: interactions between pike Esox lucius, perch Perca fluviatilis and rudd Scardinus erythrophthalmus. Oikos 56: 149–156.

    Google Scholar 

  • Eklöv, P. & S. Diehl, 1994. Piscivore efficiency and refuging prey: the importance of predator search mode. Oecologia 98: 344–353.

    Google Scholar 

  • Gilinsky, E., 1984. The role of fish predation and spatial heterogeneity in determining benthic community structure. Ecology 65: 455–468.

    Google Scholar 

  • Gilliam, J. F., D. F. Fraser & A. M. Sabat, 1989. Strong effects of foraging minnows on a stream benthic invertebrate community. Ecology 70: 445–452.

    Google Scholar 

  • Gregg, W. W. & F. L. Rose, 1985. Influences of aquatic macrophytes on invertebrate community structure, guild structure, and microdistribution in streams. Hydrobiologia 128: 45–56.

    Google Scholar 

  • Hanson, J. M., E. E. Prepas & W.C MacKay, 1989. Size distribution of the macroinvertebrate community in a freshwater lake. Can. J. Fish. aquat. Sci. 46: 1510–1519.

    Google Scholar 

  • Hargeby, A., G. Andersson, I. Blindow & S. Johansson, 1994. Trophic web structure in a shallow eutrophic lake during the dominance shift from phytoplankton to submerged macrophytes. Hydrobiologia 279/280: 83–90.

    Google Scholar 

  • Henrikson, B. I., 1988. The absence of antipredatory behaviour in the larvae of Leucorrhinia dubia (Odonata) and the consequences for their distribution. Oikos 51: 179–183.

    Google Scholar 

  • Hershey, A. E., 1985. Effects of predatory sculpin on the chironomid communities in an arctic lake. Ecology 66: 1131–1138.

    Google Scholar 

  • Hildrew, A. G., C. R. Townsend & J. Francis, 1984. Community structure in some English streams: the influence of species interactions. Freshwat. Biol. 14: 297–310.

    Google Scholar 

  • Holopainen, I. J., W. M. Tonn & C. A. Paszkowski, 1997. Tales of two fish: the dichotomous biology of crucian carp (Carassius carassius (L.)) in Northern Europe. Ann. Zool. Fenn. 34: 1–22.

    Google Scholar 

  • Horppila, J., 1994. The diet and growth of roach (Rutilus rutilus (L.)) in Lake Vesijärvi and possible changes in the course of biomanipulation. Hydrobiologia 294: 35–41.

    Google Scholar 

  • Horppila, J., J. Ruuhijärvi, M. Rask, C. Karppinen, K. Nyberg & M. Olin, 2000. Seasonal changes in the diets and relative abundances of perch and roach in the littoral and pelagic zones of a large lake. J. Fish. Biol. 56: 51–72.

    Google Scholar 

  • Jeppesen, E.,M. Søndergaard, M. Søndergaard & K. Christoffersen, 1998. The Structuring Role of SubmergedMacrophytes in Lakes. Springer, New York. 421 pp.

    Google Scholar 

  • Kurkilahti, M. & M. Rask, 1996. A comparative study of usefulness and catchability of multimesh gill nets and gill net series for sampling of perch (Perca fluviatilis L.). Fish. Res. 27: 243–260.

    Google Scholar 

  • Laffaille, P., S. Brosse, S. Gabas & S. Lek, 2001. Fish spatial distribution in the littoral zone of Lake Pareloup (France) during summer. Arch. Hydrobiol. 153: 129–144.

    Google Scholar 

  • Lampert, W. & U. Sommer 1997. Limnoecology. The ecology of lakes and streams. Oxford University Press. New York: 160–253.

    Google Scholar 

  • Lodge, D. M., J. W. Barko, D. Strayer, J. M. Melack, G. G. Mittelbach, R. W. Howarth, B. Menge & J. E. Titus, 1988. Spatial heterogeneity and habitat interactions in lake communities. In: Carpenter, S. R. (Ed.), Complex Interactions in Lake Communities. Springer-Verlag, New York: 181–208.

    Google Scholar 

  • Ságová-Marecková, M., 2002. Interactions between crayfish, benthic invertebrates, macrophyte roots and sediment in a littoral zone. Arch. Hydrobiol. 155: 645–665.

    Google Scholar 

  • McPeek, M. A., 1990. Behavioural differences between Enallagma species (Odonata) influencing differential vulnerability to predators. Ecology 71: 1714–1726.

    Google Scholar 

  • Merritt, R. W. & K. W. Cummins, 1996. An Introduction to the Aquatic Insects of North America. Kendall/Hunt Publishing Company. U.S.A. 862 pp.

    Google Scholar 

  • Mittelbach, G. G., 1981. Patterns of invertebrate size and abundance in aquatic habitat. Can. J. Fish. aquat. Sci. 38: 896–904.

    Google Scholar 

  • Mittelbach, G. G., 1988. Competition among refuging sunfishes and effects of fish density on littoral zone invertebrates. Ecology 69: 614–623.

    Google Scholar 

  • Morin, P. J., 1984. The impact of fish exclusion and species composition of larval odonates: results of short-term experiments in a North Carolina farm pond. Ecology 65: 53–60.

    Google Scholar 

  • Nilsson, B.-I., 1981. Susceptibility of some Odonata larvae to fish predation. Verh. int. Ver. Limnol. 21: 1612–1615.

    Google Scholar 

  • Olsson, T. I., 1981. Overwintering of benthic macroinvertebrates in ice and frozen sediment in a North Swedish river. Holarct. Ecol. 4: 161–166.

    Google Scholar 

  • Olsson, T. I., 1983. Seasonal variation in the lateral distribution of mayfly nymphs in a boreal river. Holarct. Ecol. 6: 333–339.

    Google Scholar 

  • Oswood, M.W., K. L. Miller & J. G. Irons III, 1991. Overwintering of freshwater benthic macroinvertebrates. In: Lee, R. E. Jr. & D. L. Denlinger, (eds), Insects at Low Temperature. Chapman and Hall, New York: 360–375.

    Google Scholar 

  • Palomäki, R. & E. Koskenniemi, 1993. Effects of bottom freezing on macrozoobenthos in the regulated Lake Pyhäjärvi. Arch. Hydrobiol. 128: 73–90.

    Google Scholar 

  • Persson, A. & L-A. Hansson, 1999. Diet shift in fish following competitive release. Can. J. Fish. aquat. Sci. 56: 70–78.

    Google Scholar 

  • Persson, L. & P. Eklöv, 1995. Prey refuges affecting interactions between piscivorous perch and juvenile perch and roach. Ecology 76: 70–81.

    Google Scholar 

  • Rask, M., M. Järvinen, K. Kuoppamäki, & H. Pöysä, 1996. Limnological responses to the collapse of the perch population in a small lake. Ann. Zool. Fenn. 33: 517–524.

    Google Scholar 

  • Richoux, P., 1994. Theoretical habitat templets, species traits, and species richness: aquatic Coleoptera in the Upper Rhône River and its floodplain. Freshwat. Biol. 31: 377–395.

    Google Scholar 

  • Rodríguez, M. A. & P. Magnan, 1993. Community structure of lacustrine macrobenthos: do taxon-based and size-based approaches yield similar insights? Can. J. Fish. aquat. Sci. 50: 800–815.

    Google Scholar 

  • Sarvala, J., T. Kairesalo, I. Koskimies, A. Lehtovaara, J. Ruuhijärvi & I. Vähäpiikkiö, 1982. Carbon, phosphorus and nitrogen budgets of the littoral Equisetum belt in an oligotrophic lake. Hydrobiologia 86: 41–53.

    Google Scholar 

  • SFS 5076, 1989. Sampling of the Bottom Fauna on Soft Bottoms with an Ekman Grab, 7 p. (In Finnish)

  • Strayer, D. L., 1991. Perspectives on the size structure of lacustrine zoobenthos, its causes, and its consequences. J. N. Am. Benthol. Soc. 10: 210–221.

    Google Scholar 

  • Tachet, H., P. Usseglio-Polatera & C. Roux, 1994. Theoretical habitat templets, species traits, and species richness: Trichoptera in the Upper Rhône River and its floodplain. Freshwat. Biol. 31: 397–415.

    Google Scholar 

  • ter Braak, C. J. F. & C. I. Prentice, 1988. A theory of gradient analysis. Adv. Ecol. Res. 18: 271–317.

    Google Scholar 

  • ter Braak, C. J. F. & P. Smilauer, 1997. Canoco forWindows Version 4.0. Centre for Biometry Wageningen. The Netherlands.

  • Tolonen, K. T., J. Karjalainen, S. Staff & M. Leppä, 2000. Individual and population-level food consumption by cyprinids and percids in a mesotrophic lake. Ecol. Freshwat. Fish 9: 153–162.

    Google Scholar 

  • Tolonen, K. T., H. Hämäläinen, I. J. Holopainen & J. Karjalainen, 2001. Influences of habitat type and environmental variables on littoral macroinvertebrate communities in a large lake system. Arch. Hydrobiol. 152: 39–67.

    Google Scholar 

  • Usseglio-Polatera, P., 1994. Theoretical habitat templets, species traits, and species richness: aquatic insects in the Upper Rhône River and its floodplain. Freshwat Biol. 31: 417–437.

    Google Scholar 

  • van den Wollenberg, A. L., 1977. Redundancy analysis. An alternative for canonical correlation analysis. Psychometrika 42: 207–219.

    Google Scholar 

  • Vinni, M., J. Horppila, M. Olin, J. Ruuhijärvi & K. Nyberg, 2000. The food, growth and abundance of five co-existing cyprinids in lake basins of different morphometry and water quality. Aquat. Ecol. 34: 421–431.

    Google Scholar 

  • Voshell, J. R. & G.M. Simmons, 1984. Colonization and succession of benthic macroinvertebrates in a new reservoir. Hydrobiologia 112: 27–39.

    Google Scholar 

  • Vuorimies, O. & K. T. Tolonen, 1999. Ahvenen ravinto Puruveden eri habitaateissa. In: Vuorimies, O. (ed), Ahvenen Ravinto Puruvedessä. Kalatutkimuksia-Fiskundersökningar 162: 1–26. (in Finnish and English and Swedish abstracts).

  • Wellborn, G. A., D. K. Skelly & E. E. Werner, 1996. Mechanisms creating community structure across a freshwater habitat gradient. Ann. Rev. Ecol. Syst. 27: 337–363.

    Google Scholar 

  • Winfield, I. J., 1986. The influence of simulated aquatic macrophytes on the zooplankton consumption rate of juvenile roach, Rutilus rutilus, rudd, Scardinius erytrophthalmus, and perch, Perca fluviatilis. J. Fish. Biol. 29 (Suppl. A): 37–48.

    Google Scholar 

  • Zimmer, K. D., M. A. Hanson & M. G. Butler, 2000: Factors influencing invertebrate communities in prairie wetlands: a multivariate approach. Can. J. Fish. aquat. Sci. 57: 76–85.

    Google Scholar 

  • Zimmer, K. D., M. A. Hanson, M. G. Butler & W. G. Duffy, 2001. Size distribution of aquatic invertebrates in two prairie wetlands, with and without fish, with implications for community production. Freshwat Biol. 46: 1373–1386.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolonen, K., Hämäläinen, H., Holopainen, I. et al. Body size and substrate association of littoral insects in relation to vegetation structure. Hydrobiologia 499, 179–190 (2003). https://doi.org/10.1023/A:1026325432000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026325432000

Navigation