Skip to main content
Log in

On the Polar Structural Fragments in Glasses from Dielectric Spectroscopic Data

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The dielectric spectra of vitreous, glass-ceramic, and single-crystal Pb5Ge3O11 are measured in the frequency ranges 3–33 and ∼ 30–1000 cm–1. The inference is made that the Pb5Ge3O11 glass can represent a polar medium in which the origin of dipoles is associated with the spatial inhomogeneity and the possible existence of crystal-like structural nanofragments that had time to form during cooling of the melt and are responsible for the medium-range order in the glass. This assumption is confirmed by the fact that low-frequency (at 30 cm–1) values of ε"" for the glass and the crystal along the polar axis are equal to each other and that the permittivity ε""s of the glass (20.7) at submillimeter frequencies is intermediate between the permittivities ε" of the crystal along the polar (34.3) and nonpolar (19.5) axes. Such a ratio between the permittivities ε"s of a crystal and a glass of the same composition is revealed for the first time owing to the high accuracy in measurements of the spectrum in the submillimeter region and strong anisotropy of the Pb5Ge3O11 crystal. At the same time, the close values of the permittivities ε"s for the glass and the crystal along the nonpolar axis indicate that polar atomic groupings in the glass are disordered and their structure on the nanoscale only resembles the structural motif of the crystal. The presence of microcrystals in the Pb5Ge3O11 glass-ceramics leads to a noticeable increase in the permittivity ε" (∼ 25). The similarity between the IR spectra of all the Pb5Ge3O11 crystalline modifications studied and the spectrum of a glass of the same composition (with due regard for the diffuseness of the spectrum of the glass) suggests that the glass and its crystalline analog have similar short- and medium-range order structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Halliyal, A.G., Bhalla, A.S., Newnham, R.E., and Cross, L.E., in Glass and Glass-Ceramics, Lewis, M.H., Ed., London: Chapman and Hall, 1989, p. 272.

    Google Scholar 

  2. Sigaev, V.N., Lopatina, E.V., Sarkisov, P.D., Stefanovich, S.Yu., and Molev, V.I., Grain-Oriented Surface Crystallization of Lanthanum Borosilicate and Lanthanum Borogermanate Glasses, Mater. Sci. Eng., B, 1997, vol. 48, pp. 254–260.

    Google Scholar 

  3. Sigaev, V.N., Stefanovich, S.Yu., Champagnon, B., Gregora, I., Pernice, P., Aronne, A., LePark, R., Sarkisov, P.D., and Dewhurst, C., Amorphous Nanostructuring in Potassium Niobium Silicate Glasses by SANS and SHG: A New Mechanism for Second-Order Optical Non-Linearity of Glasses, J. Non-Cryst. Solids, 2002, vol. 306, no. 3, pp. 238–248.

    Google Scholar 

  4. Buesseim, W.R., Cross, L.E., and Goswami, A.K., Phenomenological Theory of High Permittivity in Fine-Grained Barium Titanate, J. Am. Ceram. Soc., 1966, vol. 49, no. 1, pp. 33–36.

    Google Scholar 

  5. Ishikawa, K., Yoshikawa, K., and Okada, N., Size Effect on the Ferroelectric Phase Transition in PbTiO3 Ultrafine Particles, Phys. Rev. B: Condens. Matter, 1988, vol. 37, no. 10, pp. 5852–5855.

    Google Scholar 

  6. McCauley, D., Newnham, R.E., and Randall, C.A., Intrinsic Size Effects in a Barium Titanate Glass-Ceramics, J. Am. Ceram. Soc., 1998, vol. 81, no. 4, pp. 979–987.

    Google Scholar 

  7. Smelyanskaya, E.N., Sigaev, V.N., Volkov, A.A., Voitsekhovskii, V.V., Komandin, G.A., Shigorin, V.D., and Kaminskii, A.A., Dielectric Absorption of Single-Crystal, Glass-Ceramic, and Vitreous LaBGeO5 in the Frequency Range 3–1500 cm-1, Fiz. Khim. Stekla, 1997, vol. 23, no. 4, pp. 436–448 [Glass Phys. Chem. (Engl. transl.), 1997, vol. 23, no. 4, pp. 303–311].

    Google Scholar 

  8. Sigaev, V.N., Smelyanskaya, E.N., Plotnichenko, V.G., Koltashev, V.V., Volkov, A.A., and Pernice, P., Low-Frequency Band at 50 cm-1 in the Raman Spectrum of Cristobalite: Identification of Similar Structural Motifs in Glasses and Crystals of Similar Composition, J. Non-Cryst. Solids, 1999, vol. 248, pp. 141–146.

    Google Scholar 

  9. Sigaev, V.N., Gregora, J., Pernice, P., Champagnon, B., Smelyanskaya, E.N., Aronne, A., and Sarkisov, P.D., Structure of Lead Germanate Glasses by Raman Spectroscopy, J. Non-Cryst. Solids, 2001, vol. 279, pp. 136–144.

    Google Scholar 

  10. Kratochvilova, I., Kamba, S., Gregora, I., Petzelt, J., Sigaev, V.N., Smelyanskaya, E.N., and Molev, V.I., Vibration Properties of Pb5Ge3O11 and LaBGeO5 Glasses and Crystallised Glasses, Ferroelectrics, 2000, vol. 239, pp. 39–46.

    Google Scholar 

  11. Guo-Xiang Lan, Hong-Ye Sun, Zhi-Ying Yin, Jing-Yin Wang, and Hua-Fu Wang, Raman Spectroscopy Study of Amorphous Pb5Ge3O11 and Its Crystallization, Phys. Status Solidi B, 1991, vol. 164, pp. 39–44.

    Google Scholar 

  12. Stefanovich, S.Yu. and Sigaev, V.N., Application of the Optical Second Harmonic Generation Method in the Study of the Crystallization of Noncentrosymmetric Phases in Glasses, Fiz. Khim. Stekla, 1995, vol. 21, no. 4, pp. 345–358 [Glass Phys. Chem. (Engl. transl.), 1995, vol. 21, no. 4, pp. 253–262].

    Google Scholar 

  13. Kozlov, G. and Volkov, A., Coherent Source Submillimeter Wave Spectroscopy, Topics Appl. Phys., 1998, vol. 74, pp. 51–109.

    Google Scholar 

  14. Efimov, A.M. and Makarova, E.G., Dispersion Relations hur, A., Jiang, F., Hamazaki, S., Takashige, M., Min-Su Jang, and Shimada, S., Crystallization of Amorphous Bismuth Titanate, Fiz. Khim. Stekla, 1985, vol. 11, pp. 385–400.

    Google Scholar 

  15. Efimov, A.M., Quantitative IR Spectroscopy: Applications to Studying Glass Structure and Properties, J. Non-Cryst. Solids, 1996, vol. 203, pp. 1–11.

    Google Scholar 

  16. Malinovsky, V.K., Novikov, V.N., and Sokolov, A.P., The Low-Frequency Raman Scattering in Vitreous Materials, Fiz. Khim. Stekla, 1989, vol. 15, no. 3, pp. 331–344.

    Google Scholar 

  17. Malinovsky, V.K., Novikov, V.N., and Sokolov, A.P., Features Dynamics and Spatial Correlations in the Genesis of the Vitreous State, Fiz. Khim. Stekla, 1996, vol. 22, no. 3, pp. 204–221 [Glass Phys. Chem. (Engl. transl.), 1996, vol. 22, no. 3, pp. 152–164].

    Google Scholar 

  18. Tikhomirov, V.K., Santos, L.F., Almeida, R.M., Jha, A., Cobelke, J., and Scheffler, M., On the Origin of the Low Energy Raman Scattering in As2S3 Glass, Proceedings of the XII International Symposium "Non-Oxide Glasses and Advanced Materials," Florianopolos, 2000, pp. 401–405.

  19. Miller, P.J., Low Frequency Raman Scattering and Glass Transitions in Alkali Metaphosphate Glasses, J. Chem. Phys., 1979, vol. 71, no. 2, pp. 997–1003.

    Google Scholar 

  20. Rulmont, A. and Tarte, P., Infrared Spectrum of Crystalline and Glassy Borosilicates M'BSi2O6, J. Mater. Sci. Lett., 1987, vol. 6, pp. 38–40.

    Google Scholar 

  21. Kojima, S., Hushur, A., Jiang, F., Hamazaki, S., Takashige, M., Min-Su Jang, and Shimada, S., Crystallization of Amorphous Bismuth Titanate, J. Non-Cryst. Solids, 2001, vols. 293–295, pp. 250–254.

    Google Scholar 

  22. Knyazev, A.S., Monya, V.G., Pashkov, V.M., Poplavko, Yu.M., and Sinyakov, E.V., Optical Phonons in Vibrational Spectrum of Lead Germanate, Fiz. Tverd. Tela (Leningrad), 1975, vol. 17, pp. 2425–2427.

    Google Scholar 

  23. Pashkov, V.M., Pereverzeva, L.P., Poplavko, Yu.M., Monya, V.G., and Sinyakov, E.V., Frequency and Attenuation of Soft Mode in Lead Germanate, Fiz. Tverd. Tela (Leningrad), 1976, vol. 18, pp. 2798–2801.

    Google Scholar 

  24. Zahra, A.M. and Zahra, C.J., DSC and Raman Studies of Lead Borate and Lead Silicate Glasses, J. Non-Cryst. Solids, 1993, vol. 155, pp. 45–55.

    Google Scholar 

  25. Witke, K., Hiibert, T., and Reich, P., Quantitative Raman Investigations of the Structure of Glasses in the System B2O3-PbO, Phys. Chem. Glasses, 1994, vol. 35, no. 1, pp. 28–33.

    Google Scholar 

  26. Mogus-Milankovic, A. and Furic, K., Raman Studies of PbO-Bi2O3-Ga2O3 Glasses and Crystallized Compositions, Phys. Chem. Glasses, 1997, vol. 38, no. 3, pp. 148–155.

    Google Scholar 

  27. Fröhlich, H., Theory of Dielectrics: Dielectric Constant and Dielectric Loss, Oxford: Clarendon, 1949. Translated under the title Teoriya dielektrikov, Moscow: Inostrannaya Literatura, 1960.

    Google Scholar 

  28. Muller-Lierheim, W., Suski, T., and Otto, H.H., Factor Group Analysis of the Raman Spectrum of Pb5Ge3O11, Phys. Status Solidi B, 1977, vol. 80, pp. 31–41.

    Google Scholar 

  29. Burus, C. and Scott, B.A., Soft Optic Phonon Mode in Ferroelectric Pb5Ge3O11, Phys. Lett. A, 1972, vol. 39, p.-177.

    Google Scholar 

  30. Kozlov, G.V., Submillimeter Spectroscopy of Order-Disorder Ferroelectrics, Doctoral Dissertation, Moscow: Institute of General Physics, Russian Academy of Sciences, 1982.

    Google Scholar 

  31. Sokolov, A.P., Kisliuk, A., Quitmann, D., Kudlik, A., and Rossler, E., The Dynamics of Strong and Fragile Glass Formers: Vibrational and Relaxation Contributions, J. Non-Cryst. Solids, 1994, vols. 172–174, pp. 138–153.

    Google Scholar 

  32. Uhlig, H., Hoffmann, M.J., Lamparter, H.-P., Aldinger, F., Bellissent, R., and Steeb, S., Short-Range and Medium-Range Order in Lithium Silicate Glassed: Part I. Diffraction Experiments and Results, J. Am. Ceram. Soc., 1996, vol. 79, no. 11, pp. 2833–2838.

    Google Scholar 

  33. Uhlig, H., Hoffmann, M.J., Lamparter, H.-P., Aldinger, F., Bellissent, R., and Steeb, S., Short-Range and Medium-Range Order in Lithium Silicate Glasses: Part II. Simulation of the Structure by the Reverse Monte Carlo Method, J. Am. Ceram. Soc., 1996, vol. 79, no. 11, pp.-2839–2846.

    Google Scholar 

  34. Zhao, J., Gaskell, P.H., Cluckie, M.M., and Soper, A.K., A Neutron Diffraction, Isotopic Substitution Study of the Structure of Li2O · 2SiO2 Glass, J. Non-Cryst. Solids, 1998, vols. 232–234, pp. 721–727.

    Google Scholar 

  35. Meneau, F., Greaves, G.N., Winter, R., and Vaills, Y., WAXS and NMR Studies of Intermediate and Short Range Order in K2O-SiO2 Glasses, J. Non-Cryst. Solids, 2001, vols. 293–295, pp. 693–699.

    Google Scholar 

  36. Suzuya, K., Price, D.L., Saboungi, M.L., and Ohno, H., Intermediate-Range Order in Lead Metasilicate Glass, Nucl. Instrum. Methods Phys. Res., Sect. B, 1997, vol. 133, pp. 57–61.

    Google Scholar 

  37. Cormier, L., Gaskell, P.H., Calas, G., Zhao, J., and Soper, A.K., The Titanium Environment in a Potassium Silicate Glass Measured by Neutron Scattering with Isotopic Substitution, Physica B (Amsterdam), 1997, vols. 234–236, pp. 393–395.

    Google Scholar 

  38. Cormier, L., Gaskell, P.H., Calas, G., and Soper, A.K., Medium-Range Order around Titanium in a Silicate Glass Studied by Neutron Diffraction with Isotopic Substitution, Phys. Rev. B: Condens. Matter, 1998, vol. 58, no. 17, pp. 11322–11330.

    Google Scholar 

  39. Glass, A.M., Nassau, K., and Shiever, J.W., Evolution of Ferroelectricity in Ultrafine-Grained Pb5Ge3O11 Crystallized from the Glass, J. Appl. Phys., 1977, vol. 48, no. 12, pp. 5213–5216.

    Google Scholar 

  40. Trachenko, K.O., Dove, M.T., Harris, M.J., and Heine, V., Dynamics of Silica Glass: Two-Level Tunneling States and Low-Energy Floppy Modes, J. Phys.: Condens. Matter, 2000, vol. 12, pp. 8041–8064.

    Google Scholar 

  41. Volkov, A.A., Kozlov, G.V., Sigaev, V.N., and Smelyanskaya, E.N., Dielectric Losses in Crystalline and Vitreous SiO2 in the Submillimeter Range, Fiz. Khim. Stekla, 1988, vol. 14, no. 1, pp. 51–56.

    Google Scholar 

  42. Volkov, A.A., Kozlov, G.V., Lebedev, S.P., Pettselt, Ya., Sigaev, V.N., and Smelyanskaya, E.N., Absorption Spectra of Silica Glass and Crystalline Modifications of SiO2 in the Frequency Range 30–100 cm-1, Fiz. Khim. Stekla, 1990, vol. 16, no. 4, pp. 587–592.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkisov, P.D., Sigaev, V.N., Smelyanskaya, E.N. et al. On the Polar Structural Fragments in Glasses from Dielectric Spectroscopic Data. Glass Physics and Chemistry 29, 431–437 (2003). https://doi.org/10.1023/A:1026322310930

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026322310930

Keywords

Navigation