Skip to main content
Log in

Single Versus Repetitive Spiking to the Current Stimulus of A-β Mechanosensitive Neurons in the Crotaline Snake Trigeminal Ganglion

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. Intrasomal recordings of potentials produced by current stimulation in vivo were made from 24 (A-β) touch and 19 vibrotactile neurons in the trigeminal ganglion of 29 crotaline snakes, Trimeresurus flavoviridis.

2. Usually touch neurons responded with a single action potential at the beginning of a prolonged depolarizing pulse, whereas all vibrotactile neurons responded with multiple spikes.

3. The electrophysiological parameters examined were membrane potential, threshold current, input resistance and capacitance, time constant, rebound latency, and its threshold current. Touch neurons had higher input resistance (and lower input capacitance) than vibrotactile neurons.

4. In conclusion, current injection, which elicits a single or multiple spiking, seems a useful way to separate touch neurons from vibrotactile neurons without confirming the receptor response, and some membrane properties are also specific to the sensory modality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Cameron, A. A., Leah, J. D., and Snow, P. J. (1986). The electrophysiological and morphological characteristics of feline dorsal root ganglion cells. Brain Res. 362:1–6.

    Google Scholar 

  • Christenson, J., Boman, A., Lagerbäck, P.-Å., and Grillner, S. (1988). The dorsal cell, one class of primary sensory neuron in the lamprey spinal cord. I. Touch, pressure but no nociception—A physiological study. Brain Res. 440:1–8.

    Google Scholar 

  • Fukuda, J., and Kameyama, M. (1980). A tissure-culture of nerve cells from adult mammalian ganglia and some electrophysiological properties of the nerve cells in vitro. Brain Res. 202:249–255.

    Google Scholar 

  • Gallego, R. (1983). The ionic basis of action potentials in petrosal ganglion cells of the cat. J. Physiol. (Lond.) 342:591–602.

    Google Scholar 

  • Harper, A. A., and Lawson, S. N. (1985). Electrical properties of rat dorsal root ganglion neurons with different peripheral nerve conduction velocities. J. Physiol. (Lond.) 359:47–63.

    Google Scholar 

  • Ito, M. (1957) The electrical activity of spinal ganglion cells investigated with intracellular microelectrodes. Jpn. J. Physiol. 7:294–323.

    Google Scholar 

  • Koerber, H. R., Druzinsky, R. E., and Mendell, L. M. (1989). Properties of somata of spinal dorsal root ganglion cells differ according to peripheral receptor innervated. J. Neurophysiol. 60:1584–1596.

    Google Scholar 

  • Kostyuk, P. G., Veselovsky, N. S., Fedulova, S. A., and Tysndrenko, A. Y. (1981). Ionic currents in the somatic membrane of rat dorsal root ganglion neurons. III. Potassium currents. Neuroscience 6:2439–2444.

    Google Scholar 

  • Liang, Y.-F., and Terashima, S. (1993). Physiological properties and morphological characteristics of cutaneous and mucosal mechanical nociceptive neurons with A-delta peripheral axons in the trigeminal ganglia of crotaline snakes. J. Comp. Neurol. 328:88–102.

    Google Scholar 

  • Liang, Y.-F., Terashima, S., and Zhu, A.-Q. (1995). Distinct morphological characteristics of touch, temperature, and mechanical nociceptive neurons in the crotaline trigeminal ganglia. J. Comp. Neurol. 360:621–633.

    Google Scholar 

  • Martin, A. R., and Wickelgren, W. O. (1971). Sensory cells in the spinal cord of the sea lamprey. J. Physiol. (Lond.) 212:65–83.

    Google Scholar 

  • Puil, E., and Spigelman, I. (1988). Electrophysiological responses of trigeminal root ganglion neurons in vitro. Neuroscience 24:635–646.

    Google Scholar 

  • Puil, E., Gimbarzevsky, B., and Miura, R. M. (1986). Quantification of membrane properties of trigeminal root ganglion neurons in guinea pigs. J. Neurophysiol. 55:995–1016.

    Google Scholar 

  • Puil, E., Gimbarzevsky, B., and Spigelman, I. (1988). Primary involvement of K+ conductance in membrane resonance of root trigeminal ganglion neurons. J. Neurophysiol. 59:77–89.

    Google Scholar 

  • Ritter, A. M., and Mendell, L. M. (1992). Somal membrane properties of physiologically identified sensory neurons in the rat: Effect of nerve growth factor. J. Neurophysiol. 68:2033–2041.

    Google Scholar 

  • Rose, R. D., Koerber, H. R., Sedivec, M. J., and Mendell, L. M. (1986). Somal action potential duration differs in identified primary afferents. Neurosci. Lett. 63:259–264.

    Google Scholar 

  • Stansfeld, C. E., Marsh, S. J., Halliwell, J. V., and Brown, D. A. (1986). 4-Aminopyridine and dendrotoxin induce repetitive firing in rat visceral sensory neurones by blocking a slowly inactivating outward current. Neurosci. Lett. 64:299–304.

    Google Scholar 

  • Tanaka, H., Mishima, S., and Abe, Y. (1967). Studies on the behavior of Trimeresurus flavoviridis, a venomous snake on Amami Oshima Island in regard to speed of movement, nocturnal activity and sensitivity to infra-red radiation. Bull. Tokyo Med. Dent. Univ. 14:79–104.

    Google Scholar 

  • Terashima, S., and Liang, Y.-F. (1991). Temperature neurons in the crotaline trigeminal ganglia. J. Neurophysiol. 66:623–634.

    Google Scholar 

  • Terashima, S., and Liang, Y.-F. (1993). Modality difference in the physiological properties and morphological characteristics of the trigeminal sensory neurons. Jap. J. Physiol. 43(Suppl. 1):S267–S274.

    Google Scholar 

  • Terashima, S., and Liang, Y.-F. (1994a). Touch and vibrotactile neurons in a crotaline snake's trigeminal ganglia. Somatosens. Mot. Res. 11:169–181.

    Google Scholar 

  • Terashima, S., and Liang, Y.-F. (1994b). C mechanical nociceptive neurons in the crotaline snake's trigeminal ganglia. Neurosci. Lett. 179:33–36.

    Google Scholar 

  • Terashima, S., Zhu, A.-Q., and Chen, X.-Z. (1992). Modality specificity of membrane properties in ganglion neuron to internal stimulation. Neurosci. Res. 17(Suppl. 17):S253.

    Google Scholar 

  • Traub, R., and Mendell, L. M. (1988). The spinal projection of individual identified A-delta-and C-fibers. J. Neurophysiol. 59:41–55.

    Google Scholar 

  • Waddell, P. J., and Lawson, S. N. (1990). Electrophysiological properties of subpopulations of rat dorsal root ganglion neurons in vitro. Neuroscience 36:811–822.

    Google Scholar 

  • Weston, J. A. (1970). The migration and differentiation of neural crest cells. Adv. Morphog. 8:41–114.

    Google Scholar 

  • Yoshida, S., Matsuda, Y., and Samejima, A. (1978). Tetrodotoxin-resistant sodium and calcium components of action potentials in dorsal root ganglion cells of the adult mouse. J. Neurophysiol. 41:1096–1106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terashima, Si., Zhu, AQ. Single Versus Repetitive Spiking to the Current Stimulus of A-β Mechanosensitive Neurons in the Crotaline Snake Trigeminal Ganglion. Cell Mol Neurobiol 17, 195–206 (1997). https://doi.org/10.1023/A:1026313828426

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026313828426

Navigation