Skip to main content
Log in

A mechanistic study of the ethylenediaminetetraacetic acid-, 2,2′-bipyridyl-, and manganese(II)-assisted one-step two- and three-electron oxidation of lactic acid by chromium(VI)

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The kinetic results of the oxidation of lactic acid by CrVI in the absence and presence of ethylenediaminetetraacetic acid (EDTA), 2,2′-bipyridyl (bpy), MnII and CeIV are presented. EDTA, bpy and MnII catalyse the reaction, whereas CeIV acts as an inhibitor. Irrespective of the conditions, the order with respect to [lactic acid] was found to lie between one and two, and one in [CrVI]. In the EDTA, bpy and MnII-catalysed paths, CrVI–EDTA, CrVI–bpy and lactic acid–MnII complexes have respectively been suggested as the active oxidant and reductant. The kinetic and cerium(IV) effect studies are consistent with a one-step two-electron transfer mechanism in the absence/presence of EDTA and bpy where a chromate–ester mechanism experiences a redox decomposition (C—H cleavage) in the rate-determining step. On the other hand, the catalytic effect of MnII is described as a one-step three-electron redox decomposition (C—C cleavage) mechanism. Mechanisms in accordance with the experimental data have been proposed for the reactions. Activation parameters have also been evaluated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Westheimer, Chem. Rev., 45, 419 (1949).

    Google Scholar 

  2. K.B. Wiberg, Oxidation in Organic Chemistry, Part A; Academic Press, New York, 1964, p. 69, 182.

    Google Scholar 

  3. H. Mitewa and P.R. Bontchev, Coord. Chem. Rev., 61, 241 (1985).

    Google Scholar 

  4. K.B. Wiberg and W.H. Richardson, J. Am. Chem. Soc., 84, 2800 (1962).

    Google Scholar 

  5. G.P Haight Jr., T.J. Huang and B.Z. Shakhashiri, J. Inorg. Nucl. Chem., 33, 2169 (1971).

    Google Scholar 

  6. J.F. Perez-Benito and C. Arias, Can. J. Chem., 71, 649 (1993).

    Google Scholar 

  7. J. Rocek and T.Y. Peng, J. Am. Chem. Soc., 99, 7622 (1977).

    Google Scholar 

  8. A.K. Das, S.K. Mondal, D. Kar and M. Das, J. Chem. Res., 574 (1998).

  9. S.K. Mondal, M. Das, D. Kar and A.K. Das, Indian J. Chem., 40A, 352 (2001).

    Google Scholar 

  10. J. Rocek and F. Hasan, J. Am. Chem. Soc., 94, 3181, 8946 (1972).

    Google Scholar 

  11. F. Hasan and J. Rocek, J. Am. Chem. Soc., 95, 5421 (1973).

    Google Scholar 

  12. F. Hasan and J. Rocek, J. Am. Chem. Soc., 96, 534 (1974).

    Google Scholar 

  13. F. Hasan and J. Rocek, J. Am. Chem. Soc., 97, 3762 (1974).

    Google Scholar 

  14. M.T. Beck and D.A. Durham, J. Inorg. Nucl. Chem., 33, 461 (1971).

    Google Scholar 

  15. N. Venkatasubramanian and S. Sundaram, J. Inorg. Nucl. Chem., 31, 1761 (1969).

    Google Scholar 

  16. Z. Khan and Kabir-ud-Din, Transiton Met. Chem., 27, 832 (2002).

    Google Scholar 

  17. B.P. Gyani and S.N. Prasad, J. Ind. Chem. Soc., 39, 765 (1962).

    Google Scholar 

  18. P.C. Samal, B.B. Pattnaik, S.Ch. Dharma Rao and S.N. Mahapatro, Tetrahedron., 39, 143 (1983).

    Google Scholar 

  19. G.P. Haight Jr., G.P. Jursich, M.T. Kelso and P.J. Merrill, Inorg. Chem., 24, 2740 (1985).

    Google Scholar 

  20. Z. Khan and Kabir-ud-Din, Indian. J. Chem., 40A, 528 (2001).

    Google Scholar 

  21. Kabir-ud-Din, K. Hartani and Z. Khan, Colloids Surf., 193, 1 (2001).

    Google Scholar 

  22. Kabir-ud-Din, K. Hartani and Z. Khan, Int. J. Chem. Kinet., 33, 377 (2001).

    Google Scholar 

  23. S. Signorella, M. Rizzotto, V. Daier, C. Frascaroli, D. Palopoli, D. Martino, A. Bousseksou and L.F. Sala, J. Chem. Soc., Dalton Trans., 1607 (1996).

  24. B.R. Baker and B.M. Mehta, Inorg. Chem., 4, 848 (1965).

    Google Scholar 

  25. R.E. Hamm, J. Am. Chem. Soc., 75, 5670 (1953).

    Google Scholar 

  26. R.N.F. Thorneley, A.G. Sykes and P. Gans,J. Chem. Soc., (A) 1494 (1971).

  27. S.V. Anantakrishnan and R. Varadarajan, Indian. J. Chem. 8, 423 (1970).

    Google Scholar 

  28. M. Shahid, I.A. Khan and Kabir-ud-Din, J. Chem. Soc., Dalton Trans., 3007 (1990) and the refs. cited therein.

  29. Z. Khan, D. Gupta and A.A. Khan, Int. J. Chem. Kinet., 24, 481 (1992).

    Google Scholar 

  30. M. Krumpolc and J. Rocek, J. Am. Chem. Soc., 101, 3206 (1979).

    Google Scholar 

  31. D.H. Macartney and N. Sutin, Inorg. Chem., 24, 3403 (1985).

    Google Scholar 

  32. J.F. Perez-Benito, C. Arias, R.M. Rodriguez and M. Ros, New. J. Chem., 1445 (1998).

  33. M. Doyle, R.J. Swedo and J. Rocek, J.Am. Chem. Soc., 25, 8352 (1973).

    Google Scholar 

  34. C. Srinivasan, A. Chellamani and S. Rajagopal, J. Org. Chem., 50, 1201 (1985).

    Google Scholar 

  35. C.F. Huber and G.P. Haight Jr., J. Am. Chem. Soc., 98, 4128 (1976).

    Google Scholar 

  36. K.G. Srinivasan and J. Rocek, J. Am. Chem. Soc., 100, 2789 (1978).

    Google Scholar 

  37. D. Ip and J. Rocek, J. Am. Chem. Soc., 101, 6311 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, Z., Masan, S., Raju et al. A mechanistic study of the ethylenediaminetetraacetic acid-, 2,2′-bipyridyl-, and manganese(II)-assisted one-step two- and three-electron oxidation of lactic acid by chromium(VI). Transition Metal Chemistry 28, 881–887 (2003). https://doi.org/10.1023/A:1026303415289

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026303415289

Keywords

Navigation