Skip to main content
Log in

Environmental monitoring used to identify nuclear signatures

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The use of environmental monitoring as a technique to identify activities related to the nuclear fuel cycle has been proposed by international organizations as an additional measure to the safeguards agreements currently in force. The specific element for each kind of nuclear activity, or ‘nuclear signature’, inserted into the ecosystem by several transfer paths, can be intercepted to a greater or lesser degree by different living organisms. This work demonstrates the technical viability of using pine needles as bioindicators for some nuclear signatures (Co, Ni, La, Ce, Sm, Th, and U) associated with uranium enrichment activities using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). The concentrations of the elements whose signatures were sought and were determined in pine needle samples collected at five specific sampling locations inside the area investigated demonstrate the potential of the instrument and of the method used to identify and quantify the sought signatures present in low quantities (traces) in the evaluated matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. L. Belew, J. A. Carter, D. H. Smith, R. L. Walker, Detection of Uranium Enrichment Activities using Environmental Monitoring Techniques, Martin Marietta Energy Systems, Inc., Oak Ridge, 1993.

    Google Scholar 

  2. D. L. Donohue, R. Zeisler, Anal. Chem., 65 (1993) 359.

    Google Scholar 

  3. B. Markert, V. Weckert, Sci. Total Environ., 86 (1989) 289.

    Google Scholar 

  4. B. Markert, Toxicol. Environ. Chem., 40 (1993) 43.

    Google Scholar 

  5. P. Anderson, C. M. Davidson, D. Littlejohn, A. M. Ure, C. A. Shand, M. V. Cheschire, Anal. Chim. Acta, 327 (1996) 53.

    Google Scholar 

  6. L. Svoboda, K. ZimmermannovÁ, P. Kalac, Sci. Total Environ., 246 (2000) 61.

    Google Scholar 

  7. K. W. Nicholson, C. L. Rose, J. A. Garland, W. A. McKay, I. R. Pomeroy, Environmental Sampling for Detection of Undeclared Nuclear Activities (SRDP R217), AEA Technology Consultancy Services, Oxfordshire, Feb. 1994.

    Google Scholar 

  8. E. Kuhn, R. Hooper, D. Donohue, Intern. Symp. on Environmental Impact of Radioactive Releases, IAEA, Vienna, May 1995, p. 35.

    Google Scholar 

  9. A. C. Zook, L. H. Collins, Application of a Direct Method for the Determination of Trace Uranium in Safeguards Samples by Pulsed Laser Fluorimetry, U. S. Department of Energy, NBL, Argonne, 1980.

    Google Scholar 

  10. A. Ghods-Esphahani, J. C. Veselsky, E. Zepeda, M. A. R. K. Peiris, Radiochim. Acta, 50 (1990) 155.

    Google Scholar 

  11. C. N. Machado Jr., S. P. Maria, M. Saiki, A. M. G. Figueiredo., J. Radioanal. Nucl. Chem., 233 (1998) 59.

    Google Scholar 

  12. B. Mazzilli, I. M. C. Camargo, J. Radioanal. Nucl. Chem., 212 (1996) 251.

    Google Scholar 

  13. J. S. Becker, H. J. Dietze, Anal. At. Spectrom., 12 (1997) 881.

    Google Scholar 

  14. J. S. Alvarado, T. J. Neal, L. L. Smith, M. D. Erickson, Anal. Chim. Acta, 322 (1996) 11.

    Google Scholar 

  15. B. Markert, Instrumental Element and Multi Element Analysis of Plant Samples: Methods and Applications, John Wiley, New York, N.Y., 1996.

    Google Scholar 

  16. M. H. Ramsey, A. Argyraki, M. Thompson, Analyst, 120 (1995) 2309.

    Google Scholar 

  17. American Society for Metals, Metals Handbook, Vol. 1, 9th ed., 1978, p. 447.

  18. M. F. Campos, F. J. G. Landgraf, On the microstructure of SmCo5 magnets, in: 14th Intern. Workshop in Rare-Earth Magnets and their Applications, São Paulo, Brasil, September 1996, p. 338.

  19. S. Giurlani, Brasil Nuclear, 16 (1998) 8.

    Google Scholar 

  20. J. Becker, H. Dietze, J. Anal. At. Spectrom., 12 (1995) 881.

    Google Scholar 

  21. G. Erikson, S. Jenson, H. Kylin, W. Strachan, Nature, 341 (1989) 42.

    Google Scholar 

  22. J. H. Buchmann, J. E. S. Sarkis, C. Rodrigues, Sci. Total Environ., 263 (2000) 221.

    Google Scholar 

  23. J. H. Buchmann, D. Thesis, IPEN, Brasil, 2000.

  24. International Organization for Standardization, International Vocabulary of Basic and General Terms in Metrology, 2nd ed., Geneva, Switzerland, 1993.

  25. IUPAC, in: Pure Appl. Chem., 70 (1998) 993.

    Google Scholar 

  26. J. H. Buchmann, J. E. S. Sarkis, Quim. Nova, 25 (2002) No. 1, 111.

    Google Scholar 

  27. National Institute of Standards and Technology NIST, Certificate of Analysis, Standard Reference Material 1575, Pine Needles, USA, 1993.

  28. D. H. Smith, Oak Ridge National Laboratory Standard Operation Procedure (CASD-AM-TRL-0001), October 21, 1998.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchmann, J.H., Sarkis, J.E.S. & Rodrigues, C. Environmental monitoring used to identify nuclear signatures. Journal of Radioanalytical and Nuclear Chemistry 258, 139–142 (2003). https://doi.org/10.1023/A:1026274529301

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026274529301

Keywords

Navigation