Skip to main content
Log in

A dual purpose Compton suppression spectrometer

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A gamma-ray spectrometer with a passive and an active shield is described. It consists of a HPGe coaxial detector of 42% efficiency and 4 NaI(Tl) detectors. The energy output pulses of the Ge detector are delivered into the 3 spectrometry chains giving the normal, anti- and coincidence spectra. From the spectra of a number of 137Cs and 60Co sources a Compton suppression factor, SF and a Compton reduction factor, RF, as the parameters characterizing the system performance, were calculated as a function of energy and source activity and compared with those given in literature. The natural background is reduced about 8 times in the anticoincidence mode of operation, compared to the normal spectrum which results in decreasing the detection limits for non-coincident gamma-rays up to a factor of 3. In the presence of other gamma-ray activities, in the range from 5 to 11 kBq, non- and coincident, the detection limits can be decreased for some nuclides by a factor of 3 to 5.7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. F. Knoll, Radiation Detection and Measurement, 2nd ed., John Wiley, 1989.

  2. G. Heusser, Ann. Rev. Nucl. Part. Sci., 45 (1995) 543.

    Google Scholar 

  3. R. M. Lindstrom, D. J. Lindstrom, L. A. Slaback, J. K. Langland, Nucl. Instr. Meth., A299 (1990) 425.

    Google Scholar 

  4. J. H. Reeves, R. J. Arthur, J. Radioanal. Nucl. Chem., 124 (1988) 435.

    Google Scholar 

  5. R. L. Brodzinski, J. H. Reeves, F. T. Avignone III, H. S. Miley, J. Radioanal. Nucl. Chem., 124 (1988) 513.

    Google Scholar 

  6. R. L. Brodzinski, H. S. Miley, J. H. Reeves, F. T. Avignone III, J. Radioanal. Nucl. Chem., 160 (1992) 355.

    Google Scholar 

  7. H. S. Miley, R. L. Brodzinski, J. H. Reeves, J. Radioanal. Nucl. Chem., 160 (1992) 371.

    Google Scholar 

  8. R. L. Brodzinski, H. S. Miley, J. H. Reeves, F. T. Avignone, J. Radioanal. Nucl. Chem., 193 (1995) 61.

    Google Scholar 

  9. G. Heusser, M. Wojcik, Appl. Radiation Isotopes, 43 (1992) 9.

    Google Scholar 

  10. C. Arpesella, Appl. Radiation Isotopes, 47 (1996) 991.

    Google Scholar 

  11. G. Heusser, Nucl. Instr. Meth., B83 (1993) 223

    Google Scholar 

  12. J. L. Reyss, S. Schmidt, D. Latrouite, S. Floris, Appl. Radiation Isotopes, 47 (1996) 1049.

    Google Scholar 

  13. N. Kamikubota, H. Ejiri, T. Shibata, Y. Nagai, K. Okada, T. Watanabe, T. Irie, Y. Itoh, T. Nakamura, N. Takahashi, Nucl. Instr. Meth., A245 (1986) 379.

    Google Scholar 

  14. S. Neumaier, D. Arnold, J. BÖhm, E. Funk, Appl. Radiation Isotopes, 53 (2000) 173.

    Google Scholar 

  15. M. KÖhler, B. Gleisberg, S. Niese, Appl. Radiation Isotopes, 53 (2000) 203.

    Google Scholar 

  16. R. NùÑez-Lagos, A. Virto, Appl. Radiation Isotopes, 47 (1996) 1011.

    Google Scholar 

  17. D. Mouchel, R. Wordel, Appl. Radiation Isotopes, 47 (1996) 1033.

    Google Scholar 

  18. D. Mouchel, R Wordel, Appl. Radiation Isotopes, 43 (1992) 49.

    Google Scholar 

  19. H. A. Helms, Low Level Counting/Compton Suppression, Harshaw Chemie B.V., De Meern, Holland.

  20. J. Kantele, O. J. Marttila, J. Hattula, Nucl. Instr. Meth., 39 (1966) 194.

    Google Scholar 

  21. J. A. Cooper, R. W. Perkins, Nucl. Instr. Meth., 94 (1971) 29.

    Google Scholar 

  22. J. A. Cooper, R. W. Perkins, Nucl. Instr. Meth., 99 (1972)125.

    Google Scholar 

  23. J. Konijn, P. F. A. Goudsmit, E. W. A. Lingeman, Nucl. Instr. Meth., 109 (1973) 83.

    Google Scholar 

  24. F. Pointurier, J. Laurec, X. Blanchard, A. Adam, Appl. Radiation Isotopes, 47 (1996) 1043.

    Google Scholar 

  25. R. Wordel, D. Mouchel, E. Steinbauer, R. Oyrer, Appl. Radiation Isotopes, 47 (1996) 1061.

    Google Scholar 

  26. L. Hildingsson, C. W. Beausang, D. B. Fossan, W. F. Piel, A. P. Byrne, G. D. Dracoulis, Nucl. Instr. Meth., A252 (1986) 91.

    Google Scholar 

  27. T. Riedel, R. V. Hentig, F. V. Feilitzsch, Appl. Radiation Isotopes, 53 (2000) 231.

    Google Scholar 

  28. M. Petra, G. Swift, S. Landsberger, Nucl. Instr. Meth., A299 (1990) 85.

    Google Scholar 

  29. S. Landsberger, J. Radioanal. Nucl. Chem., 179 (1994) 67.

    Google Scholar 

  30. S. Landsberger, S. Peshev, J. Radioanal. Nucl. Chem., 202 (1996) 201.

    Google Scholar 

  31. J. Kierzek, J. Parus, Optimization of the Gamma Spectrometry System at SAL with the Use of Large NaI(Tl) Annulus in the Anticoincidence Mode for Compton Scattered Radiation Suppression, Report IAEA/AL/110, September 1997, Seibersdorf, Austria.

  32. J. Kierzek, J. Parus, Performance of a Modified Compton Suppression Spectrometer at the IAEA Safeguards Analytical Laboratory, Report IAEA/AL/120, August 1999, Seibersdorf, Austria.

  33. J. Kierzek, J. Parus, Performance of a Compton Suppression Spectrometer in the Final Configuration at the IAEA Safeguards Analytical Laboratory, Report IAEA/AL/129, February 2001, Seibersdorf, Austria.

  34. W. Wahl, D. Degering, C. Lierse, X. Lin, Nucl. Instr. Meth., A369 (1996) 627.

    Google Scholar 

  35. X. Lin, C. Lierse, W. Wahl, J. Radioanal. Nucl. Chem., 215 (1997) 169.

    Google Scholar 

  36. S. Sudarti, H. Petri, M. Rossbach, J. Radioanal. Nucl. Chem., 233 (1997) 177.

    Google Scholar 

  37. D. MassÉ, A. Adam, J. Laurec, Nucl. Instr. Meth., A369 (1996) 627.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parus, J., Kierzek, J., Raab, W. et al. A dual purpose Compton suppression spectrometer. Journal of Radioanalytical and Nuclear Chemistry 258, 123–132 (2003). https://doi.org/10.1023/A:1026270428392

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026270428392

Keywords

Navigation