Skip to main content

Expressed sequence tags in larval Arctic charr (Salvelinus alpinus)

Abstract

Arctic charr (Salvelinus alpinus) exhibits trophic specialisation and is gaining increased significance in aquaculture. Little is known about the molecular biology of this species. The aim of this work was to identify genes expressed in the Arctic charr larvae. A cDNA library was constructed from whole charr larvae. Of the 803 cDNA clones in the library, 234 representatively sized clones were selected for sequencing. Sixty two percent of the ESTs (146 sequences) showed significant similar to sequences in nucleotide and protein databases of known function and yielded 63 different unique sequences. The largest group of ESTs encoded proteins involved in metabolism. The majority of the remaining ESTs represented proteins with roles in cell structure and motility or gene/protein expression. Thirty eight percent (88 sequences) were unidentified and are therefore presumed to represent previously unidentified cDNA sequences. The sequences presented here are a result of the first effort to investigate the transcriptome of Arctic charr and will facilitate future studies on gene expression. In addition, they provide markers for valuable phenotypic traits linked to future performance.

This is a preview of subscription content, access via your institution.

References

  • Adams, C.E. and Huntingford, F.A. 1996.What is a successful fish? Determinants of competitive success in Arctic char (Salvelinus alpinus) in different social contexts. Can. J. Fish. Aq. Sci. 53: 2446–2450.

    ArticleĀ  Google ScholarĀ 

  • Adams, C.E., Fraser, D., Huntingford, F.A., Greer, R.B., Askew, C.M. and Walker A.F. 1998. Trophic polymorphism amongst Arctic charr from Loch Rannoch, Scotland. J. Fish Biol. 52: 1259–1271.

    ArticleĀ  Google ScholarĀ 

  • Adams, M.D., Kelley, J.M., Gocayne, J.D., Dubnick, M., Polymeropoulos, M.H., Xiao, H. et al. 1991. Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252: 1651–1656.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Adams, M.D., Kerlavage, A.R., Fleischmann, R.D., Fuldner, R.A., Bult, C.J., Lee, N.H. et al. 1995. Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature 377: 3–174.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Aparicio, S., Chapman, J., Stupka, E., Putnam, N., Chia, J.M., Dehal, P., Christoffels, A. et al. 2002. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297: 1301–10.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Cutts, C.J., Metcalfe, N.B. and Taylor, A.C. 1998. Aggression and growth depression in juvenile Atlantic salmon: the consequences of individual variation in standard metabolic rate. J. Fish Biol. 52: 1026–1037.

    ArticleĀ  Google ScholarĀ 

  • Cutts, C.J., Adams, C.E. and Campbell, A. 2001. Stability of physiological and behavioural determinants of performance in Arctic char (Salvelinus alpinus). Can. J. Fish. Aq. Sci. 58: 961–968.

    ArticleĀ  Google ScholarĀ 

  • Diatchenko, L., Lau, Y.F.C., Campbell, A.P., Chenchik, A., Moqadam, F., Huang, B., Lukyanov, S., Lukyanov, K., Gurskaya, N., Sverdlov, E.D. and Siebert, P.D. 1996. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93: 6025–6030.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Diatchenko, L., Lukyanov, S., Lau, Y.F., and Siebert, P.D. 1999. Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Meth. Enzymol. 303: 349–380.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Douglas, S.E., Gallant, J.W., Bullerwell, C.E., Wolff, C., Munholland, J. and Reith, M.E. 1999. Winter flounder expressed sequence tags: establishment of an EST database and identification of novel fish genes. Mar. Biotech. 1: 458–464.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ferguson, M. 1994. The role of molecular genetic markers in the management of cultured fishes. Rev. Fish Biol. Fisheries 4: 351–373.

    ArticleĀ  Google ScholarĀ 

  • Gong, Z., Hu, Z., Gong, Z.Q., Kitching, R. and Hew, C.L. 1994. Bulk isolation and identification of fish genes by cDNA clone tagging. Mol. Mar. Biol. Biotechnol. 3: 243–251.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Gorodilov, Y.N. 1996. Description of the early ontogeny of the Atlantic salmon, Salmo salar, with a novel system of interval (state) identification. Envir. Biol. Fish. 47: 109–127.

    ArticleĀ  Google ScholarĀ 

  • Hadjiargyrou, M., Lombardo, F., Zhao, S., Ahrens, W., Joo, J., Ahn, H., Jurman, M., White, D.W. and Rubin, C.T. 2002. Transcriptional profiling of bone regeneration. Insight into the molecular complexity of wound repair. J. Biol. Chem. 277: 30177–30182.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Henrich, T., Ramialison, M., Quiring, R., Wittbrodt, B., Furutani-Seiki, M., Wittbrodt, J. and Kondoh, H. Medaka Expression Pattern Database. 2003. MEPD: A Medaka gene expression pattern database. Nucl. Acid. Res. 31: 72–74.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hill, J.A., Kiessling, A. and Devlin, R.H. 2000. Coho salmon (Oncorhynchus kisutch) transgenic for a growth hormone gene construct exhibit increased rates of muscle hyperplasia and detectable levels of differential gene expression. Can. J. Fish. Aq. Sci. 57: 939–950.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kono, T., Sakai, M. and LaPatra, S.E. 2000. Expressed sequence tag analysis of kidney and gill tissues from rainbow trout (Oncorhynchus mykiss) infected with infectious hematopoietic necrosis virus. Mar. Biotech. 2: 493–498.

    CASĀ  Google ScholarĀ 

  • Lo, J., Lee, S., Xu, M., Liu, F., Ruan, H., Eun, A., He, Y., Ma, W., Wang, W., Wen, Z. and Peng, J. 2003 15,000 unique zebrafish EST clusters and their future use in microarray for profiling gene expression patterns during embryogenesis. Genome Res. 13: 455–466.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Martin, S.A., Caplice, N.C., Davey, G.C. and Powell, R. 2002. EST-based identification of genes expressed in the liver of adult Atlantic salmon (Salmo salar). Biochem. Biophys. Res. Comm. 293: 578–585.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Metcalfe, N.B., Taylor, A.C. and Thorpe, J.E. 1995. Metabolic-rate, social-status and life-history strategies in Atlantic salmon. Anim. Behaviour 49: 431–436.

    ArticleĀ  Google ScholarĀ 

  • Nam, B.H., Yamamoto, E., Hirono, I. and Aoki, T. 2000. A survey of expressed genes in the leukocytes of Japanese founder, Paralichthys olivaceus, infected with Hirame rhabdovirus. Dev. Comp. Immunol. 24: 13–24.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Nemeth, E., Bole-Feysot, C. and Tashima, L.S. 1998. Suppression subtractive hybridization (SSH) identifies prolactin stimulation of p38 MAP kinase gene expression in Nb2 T lymphoma cells: molecular cloning of rat p38 MAP kinase. J. Mol. Endocrinol. 20: 151–6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Patterson, A., Karsi, A., Feng, J. and Liu, Z. 2003. Translational machinery of channel catfish: II. Complementary DNA and expression of the complete set of 47 60S ribosomal proteins. Gene 305: 151–160.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Quackenbush, J., Liang, F., Holt, I., Pertea, G. and Upton, J. 2000. The TIGR gene indices: reconstruction and representation of expressed gene sequences. Nucleic. Acid. Res. 28: 141–145.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Savan, R. and Sakai, M. 2002 Analysis of expressed sequence tags (EST) obtained from common carp, Cyprinus carpio L., head kidney cells after stimulation by two mitogens, lipopolysaccharide and concanavalin-A. Comp. Biochem. Physiol. 131: 71–82.

    ArticleĀ  Google ScholarĀ 

  • Snorrason, S.S., Skulason, S., Jonsson, B., Malmquist, H.J., Jonasson, P.M., Sandlund, O.T. and Lindem, T. 1994. Trophic specialization in Arctic charr Salvelinus alpinus (Pisces, Salmonidae) -morphological divergence and ontogenic niche shifts. Biol. J. Linn. Soc. 52: 1–18.

    ArticleĀ  Google ScholarĀ 

  • Steffensen, J.F. 1989. Some errors in respirometry of aquatic breathers and how to avoid and correct for them. Fish Physiol. Biochem. 6: 49–59.

    ArticleĀ  Google ScholarĀ 

  • Van Do, T., Hordvik, I., Endresen, C. and Elsayed, S. 1999. Expression and analysis of recombinant salmon parvalbumin, the major allergen in Atlantic salmon (Salmo salar). Scand. J. Immunol. 50: 619–625.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Yang, G.P., Ross, D.T., Kuang, W.W., Brown, P.O. and Weigel, R.J. 1999. Combining SSH and cDNA microarrays for rapid identification of differentially expressed genes. Nucleic Acids Res. 276: 1517–1523.

    ArticleĀ  Google ScholarĀ 

  • Yao, Y.Q., Xu, J.S., Lee, W.M., Yeung, W.S. and Lee, K.F. 2003. Identification of mRNAs that are up-regulated after fertilization in the murine zygote by suppression subtractive hybridization. Biochem. Biophys. Res. Commun. 304: 60–66.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Carton, M., Schmitz, M., Cutts, C. et al. Expressed sequence tags in larval Arctic charr (Salvelinus alpinus). Fish Physiology and Biochemistry 26, 231–238 (2002). https://doi.org/10.1023/A:1026254132468

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026254132468

  • expressed sequence tags (ESTs)
  • fish
  • metabolic rate
  • suppression subtractive hybridisation (SSH)