Skip to main content
Log in

Temperature-dependent electrical properties of plasma-grown gate oxides on tensile-strained Si0.993 C0.007 layers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ultra-thin (<10 nm) gate oxides have been grown directly on tensile-strained Si0.993 C0.007 layers at a low temperature using microwave O2-plasma. The changes in gate voltage (ΔVg), flat-band voltage (VFB), oxide charge density (Qox/q) an interface state density (Dit) have been studied using a metal-oxide-semiconductor structure over the temperature range of 77–450 K. Inversion capacitance increases with temperature above 400 K, leading to a transition from high-frequency to low-frequency characteristics. The dominant types of charges in the oxide are found to be strongly temperature dependent. It is found that charge-trapping properties under Fowler–Nordheim (F–N) constant-current stressing are significantly improved with increasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Rim, J. Welser, J. L. Hoyt and J. F. Gibbsons, IEEE IEDM Tech. Dig. (1995) 517.

  2. D. K. Nayak, K. Goto, A. Yutani, J. Murota and Y. Shiraki, IEEE Trans. Electron. Devices 43 (1996) 1790.

    Google Scholar 

  3. C. K. Maiti, N. B. Chakrabarti and S. K. Ray, “Strained Silicon Heterostructures: Materials and Devices” (IEE, UK, 2001).

    Google Scholar 

  4. S. C. Jain, H. J. Osten, B. Dietrich and H. Rucker Semicond. Sci. Technol. 10 (1995) 1289.

    Google Scholar 

  5. E. Quinones, S. K. Ray, K. C. Liu and S. Banerjee, IEEE Electron Device Lett. 20 (1999) 338.

    Google Scholar 

  6. K. Pressel, M. Franz, D. Kruger and H. J. Osten, J. Vac. Sci. Technol. B 16 (1998) 1757.

    Google Scholar 

  7. M. S. Goorsky, S. S. Iyer, K. Eberl, F. K. Legoues, J. Angilello and F. Cardone, Appl. Phys. Lett. 60 (1992) 2758.

    Google Scholar 

  8. O. Vancauwenberghe, O. C. Hellman, N. Herbots and W. J. Tan, ibid. 59 (1991) 2031.

    Google Scholar 

  9. I. S. Goh, S. Hall, W. Eccleston, J. F. Zhang and K. Werner, Electron. Lett. 30 (1994) 1988.

    Google Scholar 

  10. P. W. Li and E. S. Wang, Appl. Phys. Lett. 63 (1993) 2938.

    Google Scholar 

  11. S. Maikap, L. K. Bera, S. K. Ray and C. K. Maiti, Electron. Lett. 35 (1999) 1202.

    Google Scholar 

  12. S. K. Ray, L. K. Bera, C. K. Maiti, S. John and S. K. Banerjee, Appl. Phys. Lett. 72 (1998) 1250.

    Google Scholar 

  13. S. K. Ray, C. K. Maiti, S. K. Lahiri and N. B. Chakrabarti, J. Vac. Sci. Technol B 10 (1992) 1139.

    Google Scholar 

  14. A. Bouzidi, A. Boudissa, Z. Benamara, M. Anani, H. Sehil and B. Akkal, Mater. Sci. Eng. B 48 (1997) 234.

    Google Scholar 

  15. P. Lundgren and M. O. Andersson, Solid State Electron. 39 (1996) 1143.

    Google Scholar 

  16. D. J. Dimaria, E. Cartier and D. Arnold, J. Appl. Phys. 73 (1993) 3367.

    Google Scholar 

  17. X. W. Wang, J. Luo and M. A. Tso-Ping, IEEE Trans. Electron Devices 47 (2000) 458.

    Google Scholar 

  18. L. Terman, Solid-State Electron. 5 (1962) 285.

    Google Scholar 

  19. E. H. Nicollian and J. R. Brews, “Metal Oxide Semiconductor (MOS), Physics and Technology” (Wiley, New York, 1982) 363.

    Google Scholar 

  20. M. Y. Hao, B. Maiti and J. C. Lee, Appl. Phys. Lett. 64 (1994) 2102.

    Google Scholar 

  21. E. Bano, T. Ouisse, C. Leonhard, A. Golz and E. G. Stein von Kamienski, Diam. Relat. Mater. 6 (1997) 1489.

    Google Scholar 

  22. E. G. Stein von Kamienski, F. Portheine, J. Stein, A. Golz and H. Kurz, J. Appl. Phys. 79 (1996) 2529.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahapatra, R., Kar, G.S., Ray, S.K. et al. Temperature-dependent electrical properties of plasma-grown gate oxides on tensile-strained Si0.993 C0.007 layers. Journal of Materials Science: Materials in Electronics 15, 43–46 (2004). https://doi.org/10.1023/A:1026245021545

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026245021545

Keywords

Navigation