International Applied Mechanics

, Volume 39, Issue 7, pp 753–762 | Cite as

Notes on Philosophy of the Monte Carlo Method

  • I. Elishakoff


Some personal (and inevitably biased) thoughts pertinent to the Monte Carlo method are shared with the reader; in this mass production process of papers we are pausing and asking ourselves some nagging questions. Various aspects of the philosophy of the method are discussed. Its role in stochastic mechanics is elucidated and some questions are posed in view of promoting a further constructive discussion

Monte Carlo method some nagging questions various aspects of philosophy of the method stochastic mechanics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Abramowitz and I. Stegun (eds.), Handbook of Mathematical Functions, Dover, New York (1964).Google Scholar
  2. 2.
    D. Albers, G. Alexanderson, and C. Reid (eds.), More Mathematical People, Harcourt Brace Yovanovich, New York (1990).Google Scholar
  3. 3.
    M. Bartlelt, “Chance or chaos?” J. Royal Stat. Soc., A., 153, 321-347 (1990).Google Scholar
  4. 4.
    S. Bassein, A Sampler of Randomness. The American Mathematical Monthly, June-July (1996).Google Scholar
  5. 5.
    E. Beltrami, What Is Random? Springer Verlag, New York (1999).Google Scholar
  6. 6.
    Y. Ben-Haim, Information-Gap Decision Theory, Academic Press, San Diego (2001).Google Scholar
  7. 7.
    V. V. Bolotin, Prognosis of the Life Time of Machines and Structures [in Russian], Mashinostroenie, Moscow (1984).Google Scholar
  8. 8.
    V. V. Bolotin, “Modern status of the reliability theory and statistical mechanics of structures,” in: V. V. Bolotin and A. Chyras (eds.), Reliability Problems in Structural Mechanics [in Russian], RINTIP, Vilnius (1968), pp. 7-13.Google Scholar
  9. 9.
    R. Brown and L. Chua, “Clarifying chaos: examples and counterexamples,” Int. J. Bifurc. Chaos, 6(2), 219-249 (1996).Google Scholar
  10. 10.
    W. M. Bulkeley, “IBM computer will outpace Japanese rival,” The Wall Street J., B1, November 19 (2002).Google Scholar
  11. 11.
    L. O. Chua, Y. Yao, and Q. Yang, “Generating randomness from chaos with desired randomness,” Int. J. Circ. Theor. Appl., 18(3), 215-240 (1990).Google Scholar
  12. 12.
    “Computational stochastic mechanics,” A State-of-the-Art Report, Prob. Eng. Mech., 12(4), 197-321 (1997).Google Scholar
  13. 13.
    S. H. Crandall, “Random vibration of one-and two-dimensional structures,” in: R. P. Krishnaiah (ed.), Developments in Statistics, 2, Acad. Press (1979), pp. 1-82.Google Scholar
  14. 14.
    O. Ditlevsen, “The fake of reliability measures as absolutes,” Nucl. Eng. Design, 71, 439-440 (1982).Google Scholar
  15. 15.
    I. Elishakoff, “Simulation of space-random fields for solution of stochastic boundary-value problems,” J. Acoust. Soc. Amer., 61, 399-403 (1979).Google Scholar
  16. 16.
    I. Elishakoff, “Essay on the role of the Monte Carlo method in stochastic mechanics,” in: G. I. SchuËller and P. D. Spanos (eds.), Monte Carlo Simulation, Balkema, Lisse, The Netherlands (2001), pp. 619-628.Google Scholar
  17. 17.
    I. Elishakoff and Y. J. Ren, Finite Element Method Stochastic Problems with Large Variations, Oxford Univ. Press (to be published) (2003).Google Scholar
  18. 18.
    I. Elishakoff and E. Lubliner, Random vibrations of a structure via classical and nonclassical theories,” in: S. Eggwertz (ed.), Probabilistic Methods in Mechanics and Structures, Springer, Berlin (1985), pp. 455-468.Google Scholar
  19. 19.
    I. Elishakoff, Y. J. Ren, and M. Shinozuka, “Some thoughts and attendant new results in finite element method for stochastic structures,” Chaos, Solitons, and Fractals, 7, 597-609 (1996).Google Scholar
  20. 20.
    H. H. Emam, H. Y. Pradlwarter, and G. I. SchuËller, “Reliability analysis of general MDOF-systems by direct and weight controlled Monte Carlo simulation,” in: G. I. SchuËller and P. D. Spanos (eds.), Monte Carlo Simulation, Balkema, Lisse, The Netherlands (2001), pp. 415-421.Google Scholar
  21. 21.
    V. I. Feodos'ev, Ten Lectures-Conversations on Strength of Materials [in Russian], Nauka, Moscow (1969), pp. 37-40.Google Scholar
  22. 22.
    S. Ferson, “What Monte Carlo methods cannot do,” Human and Ecological Risk Assessment, 2(4), 990-1007 (1996).Google Scholar
  23. 23.
    J. Ford, “How random is a coin toss,” Physics Today, 36, 40-47 (1983).Google Scholar
  24. 24.
    M. I. Freidlin and A. D. Wentzel, Random Perturbations of Dynamical Systems, Springer, New York (1984).Google Scholar
  25. 25.
    M. Gardner, “The random member omega bids fair to hold the mysteries of the universe,” Sci. Amer., 241, 20-34 (1979).Google Scholar
  26. 26.
    J. Glanz, “Computer scientists rethink their discipline's foundations,” Science, 269, 1363-1364 (1995).Google Scholar
  27. 27.
    G. L. Goudreau and R. L. Taylor, “Evaluation of numerical integration methods in elastodynamics,” in: Computer Methods in Applied Mechanics and Engineering, 2 (1972), pp. 69-97.Google Scholar
  28. 28.
    M. A. Grigoriu, “Class of non-Gaussian processes for Monte Carlo simulation,” J. Sound Vibr., 246 (4), 723-735 (2001).Google Scholar
  29. 29.
    I. H. Halton, “A retrospective and prospective survey of the Monte Carlo method,” SIAM Review, 12(1), 1-63 (1970).Google Scholar
  30. 30.
    M. Hoshiya, “Conditional simulation of a stochastic field,” in: G. I. Schuëller, M. Shinozuka, and J. T. P. Yao (eds.), Structural Safety and Reliability, 1, Balkema, Rotterdam (1994), pp. 349-353.Google Scholar
  31. 31.
    A. Høyland and M. Raussand, System Reliability Theory, Wiley-Interscience, New York (1984).Google Scholar
  32. 32.
    T. Hull and A. Dobell, “Random number generators,” SIAM, 4, 230-254 (1962).Google Scholar
  33. 33.
    J. E. Hurtado, D. A. Alvarez, and A. H. Barbat, “Monte Carlo analysis of structural systems using neural networks,” in: G. I. Schuëller and P. D. Spanos (eds.), Monte Carlo Simulation, Balkema, Lisse, The Netherlands (2001), pp. 265-272.Google Scholar
  34. 34.
    R. N. Iyengar, “Chaotic behavior in nonlinear oscillators,” ZAMM, 73, T46-T53 (1993).Google Scholar
  35. 35.
    F. James, “Monte Carlo theory and practice,” Rep. Prog. Phys., 43, 1145-1189 (1980).Google Scholar
  36. 36.
    B. G. Johnston, “Buckling behavior above the tangent modulus load,” J. Eng. Mech. Divis., 87, 79-99 (1961).Google Scholar
  37. 37.
    M. Kac, “What is random?” Amer. Sci., 71, 405-406 (1983).Google Scholar
  38. 38.
    R. E. Kalman, “Randomness reexamined,” Modeling, Identification, and Control, 15(3), 141-151 (1994).Google Scholar
  39. 39.
    H. Kameda and H. Morikawa, “Interpolating Stochastic Processes for Simulation of Conditional Random Fields,” Probab. Eng. Mech., 7(4), 242-254 (1992).Google Scholar
  40. 40.
    M. Klarreich, “Within every math problem, for this mathematician, lurks a card-shuffling problem,” SIAM News, Jan/Feb (2003).Google Scholar
  41. 41.
    J. P. C. Klejnem, “Sensitivity analysis vs uncertainty analysis: when to use what,” in: J. Grasman and G. van Straten (eds.), Predictability and Nonlinear Modelling in Natural Sciences and Economics, Kluwer, Dortrecht (1994), p. 322.Google Scholar
  42. 42.
    M. D. Kruskall, Asymptotology: Mathematical Methods in Physical Sciences, Prentice Hall, Englewood Cliffs (1963).Google Scholar
  43. 43.
    P. A. A. Laura, Private Communication, January 31 (2000).Google Scholar
  44. 44.
    P. A. A. Laura, J. C. Paloto, and R. D. Santos, “A note on the vibration and stability of a circular plate elastically restrained against rotation,” J. Sound Vibr., 41(2), 177-180 (1975).Google Scholar
  45. 45.
    A. W. Leissa and Y. Narita, “Natural frequencies of simply supported circular plates,” J. Sound Vibr., 70(2), 221-229 (1980).Google Scholar
  46. 46.
    A. W. Leissa, Private Communication, April 18 (2000).Google Scholar
  47. 47.
    Y. W. Li, I. Elishakoff, J. H. Starnes, Jr., and M. Shinozuka, “Prediction of natural frequency and buckling load variability due to uncertainty in material properties by convex modeling,” Fields Inst. Commun., 9, 139-154 (1996).Google Scholar
  48. 48.
    G. Louchard and G. Latouche (eds.), Probability Theory and Computer Science, Acad. Press (1983).Google Scholar
  49. 49.
    E. M. Marchante, “Monte Carlo simulation challenges in structural mechanics: an approach with PROMENVIR,” in: C. Guedes Soares (ed.), Advances in Safety and Reliability, Pergamon, New York (1997), pp. 1287-1292.Google Scholar
  50. 50.
    P. Marek, “Monte Carlo simulation-powerful tool in designer's hands,” in: G. I. Schuëller and P. D. Spanos (eds.), Monte Carlo Simulation, Balkema, Lisse, The Netherlands (2001), pp. 613-618.Google Scholar
  51. 51.
    G. Marsalgia, Random Members Fall Mainly in the Planes, Proc. Nat. Acad. Sci., 61, 25-28 (1968).Google Scholar
  52. 52.
    M. May, What is Random?, American Scientist, May-June (1997).Google Scholar
  53. 53.
    M. A. Mayer (ed.), Symposium on Monte Carlo Methods, Wiley, New York (1956), pp. 146-190.Google Scholar
  54. 54.
    D. D. McCracken, “The Monte Carlo method,” Sci. Amer., No. 5, 90-96 (1955).Google Scholar
  55. 55.
    N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Amer. Stat. Assoc., 44(247), 385-341 (1949).Google Scholar
  56. 56.
    N. M. Metropolis, A. M. and M. N. Rosenbluth, and A. H. and E. Teller, “Equations of state calculations by fast computing machines,” J. Chem. Phys., 21, 1087-1092 (1953).Google Scholar
  57. 57.
    C. A. Murphy and T. Perera, “The definition of simulation and its role within an aerospace company,” Simul. Pract. Theor., 9, 273-291 (2002).Google Scholar
  58. 58.
    S. Murphy and T. Perera, “Successes and failures in UK/US development in simulation,” Simul. Pract. Theor., 9, 333-348 (2002).Google Scholar
  59. 59.
    J. Neyman, On the Problem of Estimating the Number of Schools of Fish, Publications in Statistics, Vol. 1, University of California, Berkeley (1945).Google Scholar
  60. 60.
    M. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia (1992).Google Scholar
  61. 61.
    M. Niederreiter, “Design and analysis of pseudorandom number generators,” in: G. I. Schuëller and P. D. Spanos (eds.), Monte Carlo Simulation, Balkema, Lisse, The Netherlands (2002), pp. 3- 10.Google Scholar
  62. 62.
    Sh. Oishi and H. Inoue, “Pseudo-random number generators and chaos,” Trans. IECE Japan, E65(9), 534-541 (1982).Google Scholar
  63. 63.
    S. Pincus and R. Kalman, “Not all (possibly) 'random' sequences are created equal,” Proc. Nat. Acad. Sci., 94, 3513-3518 (1997).Google Scholar
  64. 64.
    S. Pincus and B. Singer, “Randomness and degrees of regularity,” Proc. Nat. Acad. Sci., 93, 2083-2088 (1996).Google Scholar
  65. 65.
    K. R. Popper, The Open Universe, Hutchinson, London (1982).Google Scholar
  66. 66.
    R. H. Rand and D. Ambuster, Perturbation Methods, Bifurcation Theory and Computer Algebra, Springer, Berlin (1987).Google Scholar
  67. 67.
    Y. J. Ren, I. Elishakoff, and M. Shinozuka, “Conditional simulation of non-Gaussian random fields for earthquake monitoring systems,” Chaos, Solitons and Fractals, 5(1), 91-101 (1995).Google Scholar
  68. 68.
    N. Robertson and T. Perera, “Automated data collection for simulation,” Simul. Pract. Theor., 9, 349-364 (2002).Google Scholar
  69. 69.
    R. Y. Rubinstein, Simulation and the Monte Carlo Method, Wiley, New York (1981).Google Scholar
  70. 70.
    S. Rushdie and Taj Mahal, National Geographic (2001).Google Scholar
  71. 71.
    W. Schiehlen and D. Bestle, “Random loading by large displacement chaotic motions,” in: F. Ziegler and G. I. Schuëller (eds.), Nonlinear Stochastic Dynamic Engineering Systems, Springer, Berlin (1988), pp. 205-216.Google Scholar
  72. 72.
    R. Schmalz, Out of the Mouths of Mathematicians, The Mathematical Society of America, Washington, D.C. (1993).Google Scholar
  73. 73.
    G. I. Schuëller (ed.), “State of the art report of IASSAR on computational stochastic mechanics,” Prob. Eng. Mech., 12(4), 197-313 (1997).Google Scholar
  74. 74.
    G. I. Schuëller, M. Y. Pradlwarter, and M. D. Pandey, “Methods for reliability assessment of nonlinear systems under stochastic dynamic loading: a review,” Prob. Eng. Mech., 9, 95-106 (1993).Google Scholar
  75. 75.
    G. I. Schuëller, H. J. Pradlwarter, M. Vasta, and N. Harnpornchai, “Benchmark study on non-linear stochastic structural dynamics,” in: N. Shiraishi, M. Shinozuka, and Y. K. Wen (eds.), Structural Safety and Reliability, Balkema, Rotterdam (1998), pp. 355-362.Google Scholar
  76. 76.
    G. I. Schuëller and P. D. Spanos (eds.), Monte Carlo Simulation, Balkema, Lisse, The Netherlands (2001).Google Scholar
  77. 77.
    E. Shapiro, “Overview: new directions simulation and modeling of complex systems,” Simul. Pract. Theor., 6, 91-97 (1998).Google Scholar
  78. 78.
    M. Shinozuka, “Maximum structural response to seismic excitations,” J. Eng. Mech. Divis., 96, 729-738 (1970).Google Scholar
  79. 79.
    M. Shinozuka, “Monte Carlo solution in structural dynamics,” Comp. Struct., 2(5-6), 855-874 (1972).Google Scholar
  80. 80.
    M. Shinozuka and G. Deodatis, “Simulation of stochastic processes by spectral representation,” Appl. Mech. Rev., 44(4), 191-204 (1991).Google Scholar
  81. 81.
    M. Shinozuka and G. Deodatis, “Simulation of multi-dimensional Gaussian fields by spectral representation,” Appl. Mech. Rev., 49(1), 29-53 (1996).Google Scholar
  82. 82.
    M. Shinozuka and F. Yamazaki, “Stochastic finite element analysis: an introduction,” in: S. T. Ariaratnam, G. I. Schuëller, and I. Elishakoff (eds.), Stochastic Structural Dynamics, Elsevier, London (1988), pp. 241-292.Google Scholar
  83. 83.
    Yu. A. Shreider (ed.), The Monte Carlo Method, Pergamon Press, Oxford (1966).Google Scholar
  84. 84.
    J. Singer, “Experimental studies on shell buckling,” in: 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, AIAA Paper 97-1075 (1997), pp. 1922-1932.Google Scholar
  85. 85.
    S. Skiena, Calculated Bets, Cambridge University Press (2001).Google Scholar
  86. 86.
    P. M. A. Shot, A.D. Pimentel, and L. O. Hertzberger, “Design issues for high performance simulation,” Simul. Pract. Theor., 6, 221-242 (1998).Google Scholar
  87. 87.
    P. D. Spanos and B.A. Zeldin, “Monte Carlo treatment of random fields: a broad perspective,” Appl. Mech. Rev., 51(3), 219-237 (1998).Google Scholar
  88. 88.
    K. Subbaraj and M. A. Dokainish, “A survey of direct time-integration methods in computational structural dynamics. II. Implicit method,” Comp. Struct., 32(6), 1387-1401 (1989).Google Scholar
  89. 89.
    H. Tekkens, “Karl Popper and the accountability of scientific models,” in: J. Grasman and G. van Straten (eds.), Predictability and Nonlinear Modelling in Natural Sciences and Economics, Kluwer, Dordrecht (1994), pp. 6-10.Google Scholar
  90. 90.
    S. E. Tice, “Interactive computer graphics model and simulate on-orbit operations,” Mech. Eng., Feb., 32-36 (1986).Google Scholar
  91. 91.
    G. Tyson, “?? by experiment,” The Mathematical Gazette, 69(447), p. 36 (1985).Google Scholar
  92. 92.
    R. Vaicaitis, E. M. Dowell, and C. S. Venires, “Nonlinear panel response by Monte Carlo approach, AIAA J., 12, 685-691 (1974).Google Scholar
  93. 93.
    R. Wirkamaratna, “Pseudo-random number generation for parallel Monte Carlo-a splitting approach,” SIAM News, 33(9), Nov. (2000).Google Scholar
  94. 94.
    F. Yamazaki, M. Shinozuka, and G. Dasgupta, Neumann Expansion for Stochastic Finite Element Analysis, Stochastic Mechanics, Vol. 1, Columbia University (1986).Google Scholar
  95. 95.
    O. C. Zienkiewicz, “The finite element method: from intuition to generality,” Appl. Mech. Rev. (1970).Google Scholar
  96. 96.
    W. Zurek, “Algorithmic randomness and physical entropy,” Phys. Rev., A, 4731-4751 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • I. Elishakoff
    • 1
  1. 1.Florida Atlantic UniversityBoca RatonUSA

Personalised recommendations