Skip to main content

Intestinal phytase II: A comparison of activity and in vivo phytate hydrolysis in three teleost species with differing digestive strategies

Abstract

Phytates are the primary source of phosphorus in animal feeds of plant origin; however, this phytate phosphorus (PP) is only available to growing fish provided it is released from the phytate molecule as inorganic orthophosphate. Two experiments were conducted to compare phytase activity in the intestinal brush border membrane of carnivorous hybrid striped bass Morone chrysops × M. saxatilis, omnivorous tilapia Oreochromis niloticus × O. aureus and omnivorous koi Cyprinus carpio, and to evaluate the capability of these three species for PP digestibility. The results indicate that tilapia exhibit a significantly higher specific intestinal brush border membrane phytase activity of 5 nmol inorganic phosphate released mg−1 protein min−1 than hybrid bass or koi, which do not differ in their lower activities of 3 nmol inorganic phosphate released mg−1 protein min−1. There were no statistical differences among the three species in terms of total intestinal phytase activity, although the level of total intestinal phytase activity exhibited by the two omnivorous species tended to be higher than that of the carnivorous bass. The tilapia were shown to be capable of digesting substantial amounts of dietary PP, with observed apparent PP digestibility values of 50%. The hybrid bass and the koi could digest only 1–2% of the PP present in the diet. It appears that the only species of the three examined for which intestinal phytase activity is of physiologic significance from a practical standpoint of utilizing dietary PP is tilapia.

This is a preview of subscription content, access via your institution.

References

  • Applegate, T.J., Angel, C.R., Classen, H.L., Newkirk, R.W. and Maenz, D.D. 2000. Effect of dietary calcium concentration and 25–hydroxycholecalciferol on phytate hydrolysis and intestinal phytase activity in broilers. Poultry Sci. 79(Supplement 1): 21.

    Google Scholar 

  • Ballam, G.C., Nelson, T.S. and Kirby, L.K. 1984. Effect of fiber and phytate source and of calcium and phosphorus level on phytate hydrolysis in the chick. Poultry Sci. 63: 333–338.

    CAS  Google Scholar 

  • Ballam, G.C., Nelson, T.S. and Kirby, L.K. 1985. Effect of different dietary levels of calcium and phosphorus on phytate hydrolysis by chicks. Nutr. Rep. Int. 32: 909–913.

    CAS  Google Scholar 

  • BASF. 1995. Analysis of phytase activity. Animal Nutrition Technical Service, BASF Corporation, New Jersey.

    Google Scholar 

  • Biehl, R.R. and Baker, D.H. 1997. 1–alpha-hydroxycholecalciferol does not increase the specific activity of intestinal phytase but does improve phosphorus utilization in both cecectomized and sham-operated chicks fed cholecalciferol-adequate diets. J. Nutr. 127: 2054–2059.

    PubMed  CAS  Google Scholar 

  • Bitar, K. and Reinhold, J.G. 1972. Phytase and alkaline phosphatase activities in intestinal mucosae of rat, chicken, calf, and man. Biochim. Biophys. Acta 268: 442–452.

    PubMed  CAS  Google Scholar 

  • Bitterlich, G. 1985. Digestive enzyme pattern of two stomachless filter feeders, silver carp, Hypophthalmichthys molitrix Val., and bighead carp, Aristichthys nobilis Rich. J. Fish. Biol. 27: 103–112.

    Article  CAS  Google Scholar 

  • Brown, M.L., Jaramillo, F., Jr. and Gatlin, D.M., III. 1993. Dietary phosphorus requirement of juvenile sunshine bass, Morone chrysops × M. saxatilis. Aquaculture. 113: 355–363.

    Article  CAS  Google Scholar 

  • Carlos, A.B. and Edwards, H.M., Jr. 1998. The effects of 1,25–dihydroxycholecalciferol and phytase on the natural phytate phosphorus utilization by laying hens. Poultry Sci. 77: 850–858.

    CAS  Google Scholar 

  • Chakrabarti, I., Gani, M.A., Chaki, K.K., Sur, R. and Misra, K.K. 1995. Digestive enzymes in 11 freshwater teleost fish species in relation to food habit and niche segregation. Comp. Biochem. Physiol. 112A: 167–177.

    Article  CAS  Google Scholar 

  • Cheryan, M. 1980. Phytic acid interactions in food systems. CRC Crit. Rev. Food Sci. Nutr. 13: 297–335.

    Article  CAS  Google Scholar 

  • Cooper, J.R. and Gowing, H.S. 1983. Mammalian small intestinal phytase. Br. J. Nutr. 50: 673–678.

    Article  PubMed  CAS  Google Scholar 

  • Dabrowski, K. 1993. Ecophysiological adaptations exist in nutrient requirements of fish: true or false? Comp. Biochem. Physiol. 104A: 579–584.

    Article  CAS  Google Scholar 

  • Dahlquist, A. 1964. Method for the assay of intestinal disaccharidases. Anal. Biochem. 7: 18–25.

    Article  Google Scholar 

  • Das, K.M. and Tripathi, S.D. 1991. Studies on the digestive enzymes of grass carp, Ctenopharyngodon idella (Val.). Aquaculture 92: 21–32.

    Article  CAS  Google Scholar 

  • Davies, N.T. and Flett, A.A. 1978. The similarity between alkaline phosphatase (EC 3.1.3.1) and phytase (EC 3.1.3.8) activities in the rat intestine and their importance in phytate-induced zinc deficiency. Br. J. Nutr. 39: 307–316.

    Article  PubMed  CAS  Google Scholar 

  • Davies, M.I. and Motzok, I. 1972. Properties of chick intestinal phytase. Poultry Sci. 51: 494–501.

    CAS  Google Scholar 

  • Edwards, H.M., Jr. 1982. Phosphorus 1. Effect of breed and strain on utilization of suboptimal levels of phosphorus in the ration. Poultry Sci. 62: 77–84.

    Google Scholar 

  • Edwards, H.M., Jr. 1993. Dietary 1,25–dihydroxycholecalciferol supplementation increases natural phytate phosphorus utilization in chickens. J. Nutr. 123: 567–577.

    PubMed  CAS  Google Scholar 

  • Ellestad, L.E., Angel, R. and Soares, J.H., Jr. 2002. Intestinal phytase I: Detection and preliminary characterization of activity in the intestinal brush border membrane of hybrid striped bass Morone saxatilis × M. chrysops. Fish Physiol. Biochem. 26: 249–258.

    Article  CAS  Google Scholar 

  • Engelen, A.J., Van der Heeft, F.C., Randsdorp, P.H.G. and Smith, E.L.C. 1994. Simple and rapid determination of phytase activity. J.A.O.A.C. Int. 77: 760–764.

    CAS  Google Scholar 

  • Eya, J.C. and Lovell, R.T. 1997. Net absorption of dietary phosphorus from various inorganic sources and effect of fungal phytase on net absorption of plant phosphorus by channel catfish Ictalurus punctatus. J. World Aquacult. Soc. 28: 386–391.

    Google Scholar 

  • Forster, I., Higgs, D.A., Dosanjh, B.S., Rowshandeli, M. and Parr, J. 1999. Potential for dietary phytase to improve the nutritive value of canola protein concentrate and decrease phosphorus output in rainbow trout (Oncorhynchus mykiss) held in 11 °C fresh water. Aquaculture. 179: 109–125.

    Article  CAS  Google Scholar 

  • Gaylord, T.G. and Gatlin, D.M., III. 1996. Determination of digestibility coefficients of various feedstuffs for red drum (Sciaenops ocellatus). Aquaculture 139: 303–314.

    Article  Google Scholar 

  • Harpaz, S. and Uni, Z. 1999. Activity of intestinal mucosal brush border membrane enzymes in relation to the feeding habits of three aquacultured fish species. Comp. Biochem. Phys. 124: 155–160.

    Article  Google Scholar 

  • Hepher, B. 1988. Nutrition of Pond Fishes. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hu, H.L., Wise, A. and Henderson, C. 1996. Hydrolysis of phytate and inositol tri-, tetra-, and penta-phosphates by the intestinal mucosa of the pig. Nutr. Res. 16: 781–787.

    Article  CAS  Google Scholar 

  • Hughes, K.P. and Soares, J.H., Jr. 1998. Efficacy of phytase on phosphorus utilization in practical diets fed to striped bass, Morone saxatilis. Aquacult. Nutr. 4: 133–140.

    Article  CAS  Google Scholar 

  • Iqbal, T.H., Lewis, K.O. and Cooper, B.T. 1994. Phytase activity in the human and rat small intestine. Gut 35: 1233–1236.

    PubMed  CAS  Google Scholar 

  • Kapoor, B.G., Smit, H. and Verighina, I.A. 1975. The alimentary canal and digestion in teleosts. In: Advances in Marine Biology. Vol. 13, pp. 109–239. Edited by F.S. Russel and C.M. Yonge. Academic Press, London.

    Google Scholar 

  • Ketaren, P.P., Batterham, E.S. and Dettmann, E.B. 1993. Phosphorus studies in pigs: assessing phosphorus availability for pigs and rats. Br. J. Nutr. 70: 269–288.

    Article  PubMed  CAS  Google Scholar 

  • Ketola, H.G. and Harland, B.F. 1993. Influence of phosphorus in rainbow trout diets on phosphorus discharges in effluent water. Trans. Am. Fish. Soc. 122: 1120–1126.

    Article  CAS  Google Scholar 

  • Kuperman, B.I. and Kuz'mina, V.V. 1994. The ultrastructure of the intestinal epithelium in fishes with different types of feeding. J. Fish Biol. 44: 181–193.

    Article  Google Scholar 

  • Kuz'mina, V.V. and Gelman, A.G. 1997. Membrane-linked digestion in fish. Rev. Fish. Sci. 5: 99–129.

    Google Scholar 

  • LaVorgna, M. 1998. Utilization of Phytate Phosphorus by Tilapia. Doctor of Philosophy Dissertation, University of Maryland, Eastern Shore, Maryland.

    Google Scholar 

  • Lee, J.A. and Cossins, A.R. 1990. Temperature adaptation of biological membranes: differential homoeoviscous responses in brush-border and basolateral membranes of carp intestinal mucosa. Biochim. Biophys. Acta. 1026: 195–203.

    Article  PubMed  CAS  Google Scholar 

  • Lott, J.N.A. 1984. Accumulation of seed reserves of phosphorus and other minerals. In: Seed Physiology. Vol. 1, pp. 139–166. Edited by D.R. Murray. Academic Press, Sydney.

    Google Scholar 

  • Lovell, T. 1989. Nutrition and Feeding of Fish. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Maddaiah, V.T., Kurnick, A.A., Hulett, B.J. and Reid, B.L. 1964. Nature of intestinal phytase activity. Proc. Soc. Exp. Biol. Med. 115: 1054–1057.

    PubMed  CAS  Google Scholar 

  • Maenz, D.D. and Classen, H.L. 1998. Phytase activity in the small intestinal brush border membrane of the chicken. Poultry Sci. 77: 557–563.

    CAS  Google Scholar 

  • Maenz, D.D. and Engele-Schaan, C.M. 1996. Methionine and 2–hydroxy-4–methylthiobutanoic acid are transported by distinct Na+-dependent and H+-dependent systems in the brush border membrane of the chick intestinal epithelium. J. Nutr. 126: 529–536.

    PubMed  CAS  Google Scholar 

  • Mitchell, R.D. and Edwards, H.M., Jr. 1996. Effects of phytase and 1,25–dihydroxycholecalciferol on phytate utilization and the quantitative requirement for calcium and phosphorus in young broiler chickens. Poultry Sci. 75: 95–110.

    CAS  Google Scholar 

  • Miyazawa, E., Iwabuchi, A. and Yoshida, T. 1996. Phytate breakdown and apparent absorption of phosphorus, calcium and magnesium in germfree and conventionalized rats. Nutr. Res. 16: 603–613.

    Article  CAS  Google Scholar 

  • Mohammed, A., Gibney, M.J. and Taylor, T.G. 1991. The effects of dietary levels of inorganic phosphorus, calcium and cholecalciferol on the digestibility of phytate-P by the chick. Br. J. Nutr. 66: 251–259.

    Article  PubMed  CAS  Google Scholar 

  • Moriarty, D.J.W. 1973. The physiology of digestion of blue-green algae in the cichlid fish, Tilapia nilotica. J. Zool. 171: 25–39.

    CAS  Google Scholar 

  • Moriarty, D.J.W. and Moriarty, C.M. 1973. The assimilation of carbon from phytoplankton by two herbivorous fishes, Tilapia nilotica and Haplochromis nigripinnus. J. Zool. 171: 41–55.

    Google Scholar 

  • National Research Council. 1993. Nutrient Requirements of Fish. National Academy Press, Washington, D.C.

    Google Scholar 

  • Nelson, T.S. 1976. The hydrolysis of phytate phosphorus by chicks and laying hens. Poultry Sci. 55: 2262–2264.

    CAS  Google Scholar 

  • Nelson, T.S. and Kirby, L.K. 1979. Effect of age and diet composition on the hydrolysis of phytate phosphorus by rats. Nutr. Rep. Int. 20: 729–734.

    CAS  Google Scholar 

  • Newkirk, R.W. and Classen, H.L. 1998. In vitro hydrolysis of phytate in canola meal with purified and crude sources of phytase. Anim. Feed Sci. Tech. 72: 315–327.

    Article  CAS  Google Scholar 

  • Oliva-Teles, A., Pereira, J.P., Gounveia, A. and Gomes, E. 1998. Utilisation of diets supplemented with microbial phytase by seabass (Dicentrachus labrax) juveniles. Aquat. Living Resour. 11: 255–259.

    Article  Google Scholar 

  • Pallauf, J. and Rimbach, G. 1997. Nutritional significance of phytic acid and phytase. Arch. Anim. Nutr. 50: 301–319.

    Article  CAS  Google Scholar 

  • Papatryphon, E. and Soares, J.H., Jr. 2001. The effect of phytase on apparent digestibility of four practical plant feedstuffs fed to striped bass, Morone saxatilis. Aquacult. Nutr. 7: 161–167.

    Article  CAS  Google Scholar 

  • Papatryphon, E., Howell, R.A. and Soares, J.H., Jr. 1999. Growth and mineral absorption by striped bass Morone saxatilis fed a plant feedstuff based diet supplemented with phytase. J. World Aquacult. Soc. 30: 161–173.

    Google Scholar 

  • Patwardhan, V.N. 1937. The occurrence of a phytin-splitting enzyme in the intestines of albino rats. Biochem. J. 31: 560–564.

    PubMed  CAS  Google Scholar 

  • Pointillart, A., Fontaine, N. and Thomasset, M. 1984. Phytate phosphorus utilization and intestinal phosphatases in pigs fed low phosphorus wheat or corn diets. Nutr. Rep. Int. 29: 473–483.

    CAS  Google Scholar 

  • Pointillart, A., Fontaine, N., Thomasset, M. and Jay, M.E. 1985. Phosphorus utilization, intestinal phosphatases and hormonal control of calcium metabolism in pigs fed phytic phosphorus: soyabean or rapeseed diets. Nutr. Rep. Int. 32: 155–167.

    CAS  Google Scholar 

  • Rao, R.K. and Ramakrishnan, C.V. 1985. Studies on inositolphosphatase in rat small intestine. Enzyme. 33: 205–215.

    PubMed  CAS  Google Scholar 

  • Rao, R.K. and Ramakrishnan, C.V. 1986a. Inositol phosphatase in developing rat duodenum, jejunum, and ileum. Biol. Neonate 50: 165–170.

    Article  PubMed  CAS  Google Scholar 

  • Rao, R.K. and Ramakrishnan, C.V. 1986b. Effects of neonatal undernutrition and subsequent nutritional rehabilitation or administration of thyroxine and hydrocortisone on the inositol phosphatase activities of the rat intestine. J. Ped. Gastroent. Nutr. 5: 787–792.

    Article  CAS  Google Scholar 

  • Rao, R.K. and Ramakrishnan, C.V. 1990. Effects of postweaning protein malnutrition on intestinal inositol phosphatase activities in normally weaned and neonatally undernourished rats. J. Ped. Gastroent. Nutr. 11: 96–100.

    CAS  Google Scholar 

  • Ravindran, V. 1996. Occurrence of phytic acid in plant feed ingredients. In: Phytase in Animal Nutrition and Waste Management. pp. 85–92. Edited by M.B. Coelho and E.T. Kornegay. BASF Corporation, New Jersey.

    Google Scholar 

  • Reddy, N.R., Sathe, S.K. and Saunkhe, D.K. 1982. Phytates in legumes and cereals. Adv. Food Res. 28: 1–92.

    PubMed  CAS  Google Scholar 

  • Reshkin, S.J., Grover, M.L., Howerton, R.D., Grau, E.G. and Ahearn, G.A. 1989. Dietary hormonal modification of growth, intestinal ATPase, and glucose transport in tilapia. Am. J. Physiol. 256: E610–E618.

    PubMed  CAS  Google Scholar 

  • Riche, M. and Brown, P.B. 1999. Incorporation of plant protein feedstuffs into fish meal diets for rainbow trout increases phosphorus availability. Aquacult. Nutr. 5: 101–105.

    Article  Google Scholar 

  • Rounds, M.A. and Nielsen, S.S. 1993. Anion-exchange high-performance liquid chromatography with post-column detection for the analysis of phytic acid and other inositol phosphates. J. Chromatogr. 653: 148–152.

    Article  CAS  Google Scholar 

  • Sabapathy, U. and Teo, L.H. 1993. A quantitative study of some digestive enzymes in the rabbitfish, Siganus canaliculatus and the sea bass, Lates calcarifer. J. Fish Biol. 42: 595–602.

    Article  CAS  Google Scholar 

  • Saha, D.C. and Gilbreath, R.L. 1991. Analytical recovery of chromium in diet and feces determined by colorimetry and atomic absorption spectrophotometry. J. Food Sci. Agricult. 55: 433–446.

    CAS  Google Scholar 

  • Sandberg, A.-S., Larsen, T. and Sandstrom, B. 1993. High dietary calcium level decreases colonic phytate degradation in pigs fed a rapeseed diet. J. Nutr. 123: 559–566.

    PubMed  CAS  Google Scholar 

  • SAS Institute, Inc. 1998. SAS System for Regression, 3rd edition. Cary, North Carolina.

  • Schafer, A., Koppe, W.M., Meyer-Burgdorff, K.H. and Gunther, K.D. 1995. Effects of microbial phytase on utilization of native phosphorus by carp in a diet based on soybean meal. Water Sci. Tech. 31: 149–155.

    Article  Google Scholar 

  • Scheideler, S.E and Sell, J.L. 1987. Utilization of phytate phosphorus in laying hens as influenced by dietary phosphorus and calcium. Nutr. Rep. Int. 35: 1073–1081.

    CAS  Google Scholar 

  • Sokhal, R.R. and Rohlf, J.F. 1987. Introduction to Biostatistics, 2nd edition. W.H. Freeman and Company, New York.

    Google Scholar 

  • Spitzer, R.R. and Phillips, P.H. 1945. Enzymatic relationships in the utilization of soybean oil meal phosphorus by the rat. J. Nutr. 30: 183–192.

    CAS  Google Scholar 

  • Stevens, C.E. and Hume, I.D. 1995. Comparative Physiology of the Vertebrate Digestive System, 2nd edition. Cambridge University Press, New York.

    Google Scholar 

  • Stickney, R.R. 1975. Cellulase activity in the stomachs of freshwater fishes from Texas. Proc. Southeast. Assoc. Game Fish Comm. 29: 282–287.

    Google Scholar 

  • Vielma, J., Lall, S.P., Koskela, J., Schoner, F.-J. and Mattila, P. 1998. Effects of dietary phytase and cholecalciferol on phosphorus availability in rainbow trout (Oncorhynchus mykiss). Aquaculture 163: 309–323.

    Article  CAS  Google Scholar 

  • Williams, P.J. and Taylor, T.J. 1985. A comparative study of phytate hydrolysis in the gastrointestinal tract of the golden hamster (Mesocricetus auratus) and the laboratory rat. Br. J. Nutr. 54: 429–435.

    Article  PubMed  CAS  Google Scholar 

  • Wise, A. and Gilburt, D.J. 1982. Phytate hydrolysis by germfree and conventional rats. App. Env. Microb. 43: 753–756.

    CAS  Google Scholar 

  • Yang, W.-J., Matsuda, Y., Inomata, M. and Nakagawa, H. 1991a. Developmental and dietary induction of the 90K subunit of rat intestinal phytase. Biochim. Biophys. Acta 1075: 83–87.

    PubMed  CAS  Google Scholar 

  • Yang, W.-J., Matsuda, Y., Sano, S., Masutani, H. and Nakagawa, H. 1991b. Purification and characterization of phytase from rat intestinal mucosa. Biochim. Biophys. Acta 1075: 75–82.

    PubMed  CAS  Google Scholar 

  • Zambonino-Infante, J.L. 1994. Development and response to diet change of some digestive enzymes in sea bas (Dicentrarchus labrax) larvae. Fish Physiol. Biochem. 12: 399–408.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ellestad, L., Angel, R. & Soares, J. Intestinal phytase II: A comparison of activity and in vivo phytate hydrolysis in three teleost species with differing digestive strategies. Fish Physiology and Biochemistry 26, 259–273 (2002). https://doi.org/10.1023/A:1026231624543

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026231624543

  • acid phosphatase
  • enzyme activity
  • hybrid striped bass
  • koi
  • maltase
  • Michaelis-Menten kinetics
  • phytate phosphorus digestibility
  • tilapia