Advertisement

Hydrobiologia

, Volume 498, Issue 1–3, pp 151–160 | Cite as

Accumulation, depuration and distribution of cadmium and zinc in the green-lipped mussel Perna viridis (Linnaeus) under laboratory conditions

  • C. K. Yap
  • A. Ismail
  • S. G. Tan
  • H. Omar
Article

Abstract

Ecotoxicological tests were conducted in the green-lipped mussel Perna viridis under laboratory conditions. Different rates of accumulation and depuration in soft tissues are found and this might be due to different mechanisms of metal binding and regulation. At the end of depuration, Cd levels in soft tissues of P. viridis were 10–30 times higher than before exposure, while Zn levels in soft tissues were almost similar to levels before exposure. These results indicate that P. viridis is a good biomonitoring organism for Cd but Zn levels might be actively regulated. It remains uncertain whether P. viridis is a good biomonitoring organism of environmental Zn contamination. However, the positive patterns, although different rates, of accumulation and depuration for Cd and Zn support the use of P. viridis as a biomonitoring agent for such metals.

cadmium zinc Perna viridis accumulation depuration distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amiard, J. C., C. Amiard-Triquet, B. Berthet & C. Metayer, 1986. Contribution to the ecotoxicological study of cadmium, lead, copper and zinc in the mussel Mytilus edulis I: Field study. Mar. Biol. 90: 425-431.Google Scholar
  2. Boonchalermkit, S., S. Srilachai & P. Wongpan, 1998. Distribution of trace metals in green mussels (Perna viridis) from Thailand coastal waters. Paper presented at the 4th ASEAN-Canada CPMS-II Technical Conference Towards Sustainable Development and Integrated Management of the Marine Environment in ASEAN, 26-30th October, 1998, Langkawi, Malaysia (Abstract).Google Scholar
  3. Carpene, E. & S. G. George, 1981. Absorption of cadmium by gills of Mytilus edulis (L.). Mol. Physiol. 1: 23-34.Google Scholar
  4. Chan, H. M., 1989. Temporal and spatial fluctuations in trace metal concentrations in transplanted mussels in Hong Kong. Mar. Poll. Bull. 20: 82-86.Google Scholar
  5. Chong, K. & W.-X. Wang, 2000. Assimilation of Cd, Cr and Zn by the green mussel Perna viridis and the Manila clam Ruditapes philippinarum. Envir. Toxicol. Chem. 19: 1660-1667.Google Scholar
  6. Chong, K. & Wang, W.-X. Wang, 2001. Comparative studies on the biokinetics of Cd, Cr and Zn in the green mussel Perna viridis and the Manila clam Ruditapes philippinarum. Environ. Pollut. 115: 107-121.Google Scholar
  7. Coombs, T. L. & P. J. Keller, 1982. Mytilus byssal thread as an environmental marker for metals. Aquat. Tox. 1: 291-300.Google Scholar
  8. D'Silva, C. & T. W. Kureishy, 1978. Experimental studies on the accumulation of copper and zinc in the green mussel. Mar. Poll. Bull. 9: 187-190.Google Scholar
  9. Da Ros, L., C. Nasci, I. Marigomez & M. Soto, 2000. Biomarkers and trace metals in the digestive gland of indigenous and transplanted mussels, Mytilus galloprovincialis, in Venice Lagoon, Italy. Mar. Envir. Res. 50: 417-423.Google Scholar
  10. Dillon, T. M. & J. M. Neff, 1978. Mercury and the estuarine clam, Rangia cuneata Gray II. uptake, tissue distribution and depuration. Mar. Envir. Res. 1: 67-76.Google Scholar
  11. Fan, W. & W.-X. Wang, 2001. Sediment geochemical controls on Cd, Cr, and Zn assimilation by the clam Ruditapes philippinarum. Envir. Toxicol. Chem. 20: 2309-2317.Google Scholar
  12. Fowler, B. A., D. A. Wolfe & W. F. Kettler, 1975. Mercury and iron uptake by cytosomes in mantle epithelial cells of quahog clams (Mercenaria mercenaria) exposed to mercury. J. Fis. Res. Bd Can. 32: 1767-1775.Google Scholar
  13. George, S. G. & T. L. Coombs, 1977. The effects of chelating agents on the uptake and accumulation of cadmium byMytilus edulis. Mar. Biol. 39: 261-268.Google Scholar
  14. George, S. G., E. Carpene, T. L. Coombs, J. Overnell & A. Youngson, 1979. Characterisation of cadmium-binding proteins from mussel Mytilus edulis (L.), exposed to cadmium. Biochim. Biophys. Acta 580: 225-233.Google Scholar
  15. Goldberg, E. D., 1975. The mussel watch - A first step in global marine monitoring. Mar. Poll. Bull. 6: 111.Google Scholar
  16. Gundacker, C., 1999. Tissue-specific heavy metal (Cd, Pb, Cu, Zn) deposition in a natural population of the zebra mussel Dreissena polymorpha Pallas. Chemosphere 38: 3339-3356.Google Scholar
  17. Hungspreugs, M., W. Utoomprurkporn, S. Dharmvanij & P. Sompongchaiyakul, 1989. The present status of the aquatic environment of Thailand. Mar. Poll. Bull. 20: 327-332.Google Scholar
  18. Hutagalung, H. P., 1989. Mercury and cadmium content in green mussel, Mytilus viridis (L.) from onrush waters, Jakarta Bay. Bull. Environ. Contam.Toxicol. 42: 814-820.Google Scholar
  19. Ikuta, K., 1986. Metal concentrations in byssuses and soft bodies of bivalves. Bull. Fac. Agric. Miyazaki Uni. 33: 255-264.Google Scholar
  20. Ismail, A. & C. K. Yap, 2000. Byssus of green-lipped mussel Perna viridis (Linnaeus) as a potential biomarker for heavy metals. Paper presented at the Malaysian Science and Technology Congress 2000, Symposium B. 16th-18th, October, 2000, Hotel Casuarina, Ipoh.Google Scholar
  21. Ismail, A., 1993. Heavy metals Cd, Cu, Pb and Zn in green mussel (Perna viridis L.) from the west coast of Peninsular Malaysia. IRPA / UKM Workshop and Seminar, Allson Kelana, Seremban Malaysia, 9-12 December, 1993.Google Scholar
  22. Ismail, A., C. K. Yap, M. P. Zakaria, S. Tanabe, H. Takada & A. R. Ismail, 2000. Green-lipped mussel Perna viridis (L.) as a biomonitoring agent for heavy metals in the west coast of Peninsular Malaysia. In Shariff, M., F. M. Yusoff, N. Gopinath, H. M. Ibrahim & A. NikMustapha (eds), Towards Sustainable Management of the Straits of Malacca, Technical and Financial Options. Malacca Straits Research and Development Centre (MASDEC), University Putra Malaysia, Serdang, Malaysia: 553-559.Google Scholar
  23. Kennedy, P. C., 1986. The use of molluscs for monitoring trace elements in the marine environment in New Zealand. 1. The contribution of ingested sediment to trace element concentrations in New Zealand molluscs. N. Z. J.mar. Freshwat. Res. 20: 627-640.Google Scholar
  24. Klumpp, D. W. & C. Burdon-Jones, 1982. Investigations of the potential of bivalve molluscs as indicators of heavy metal levels in tropical marine waters. Aust. J mar. Freshwat. Res. 33: 285-300.Google Scholar
  25. Lakshmanan, P. T. & P. N. K. Nambisan, 1989. Bioaccumulation and depuration of some trace metals in the Mussel Perna viridis (Linnaeus). Bull. Envir. Contam. Toxicol. 43: 131-138.Google Scholar
  26. Liong, P. C., 1986. Heavy metals in shellfish from the northern part of Malacca Straits. In Chan, H. H., K. J. Ang, A. T. Law, M. I. Mohamed & I. Omar (eds), Development and Management of Tropical Living Aquatic Resources. Proceedings of an International Conference Held at UPM, Serdang, Selangor, Malaysia August 1983. Penerbit UPM, Serdang: 225-229.Google Scholar
  27. Livingstone, D. R. & R. K. Pipe, 1992. Mussels and environmental contaminants: Molecular and cellular aspects. In Gosling, E. (ed.), The Mussel Mytilus: Ecology, Physiology, Genetics and Culture, Elseviers Science Publishers, Amsterdam: 425-464.Google Scholar
  28. Lobel, P. B., 1987. Short-term and long-term uptake of zinc by the mussel,Mytilus edulis: a study in individual variability. Arch. Envir. Contam. Toxicol. 16: 723-732.Google Scholar
  29. Luten, J. B., W. Bouquet, M. M. Burggraaf & J. Rus, 1986. Accumulation, elimination, and speciation of cadmium and zinc in mussel, Mytilus edulis, in Natural Environment. Bull. Envir. Contam. Toxicol. 37: 579-586.Google Scholar
  30. Nicholson, S., 1999. Cardiac and lysosomal responses to periodic copper in the mussel Perna viridis (Bivalvia: Mytiloidae). Mar. Poll. Bull. 38: 1157-1162.Google Scholar
  31. Phillips, D. J. H. & D. A. Segar, 1986. Use of bioindicator organism for monitoring contaminants: programme design imperatives. Mar. Poll. Bull. 17: 10-17.Google Scholar
  32. Phillips, D. J. H. & P. S. Rainbow, 1993. Biomonitoring of Trace Aquatic Contaminants. Elsevier Science Publishers Limited, London. 371pp.Google Scholar
  33. Phillips, D. J. H. & W. W. S. Yim, 1981. A comparative evaluation of oysters, mussels and sediments as indicators of trace metals in Hong Kong waters. Mar. Ecol. Prog. Ser. 6: 285-293.Google Scholar
  34. Phillips, D. J. H., 1979. The rock oyster Saccostrea glomerata as an indicator of trace metals in Hong Kong. Mar. Biol. 52: 353-360.Google Scholar
  35. Phillips, D. J. H., 1985. Organochlorines and trace metals in greenlipped mussels Perna viridis from Hong Kong Waters: a test of indicator ability. Mar. Ecol. Prog. Ser. 21: 251-258.Google Scholar
  36. Pyatt, F. B., A. J. Pyatt & V. W. Pentreath, 1997. Distribution of metals and accumulation of lead by different tissues in the freshwater snail Lymnaea stagnalis (L.). Envir. Toxicol. Chem. 16: 1393-1395.Google Scholar
  37. Rees, J. G., D. Setiapermana, V. A. Sharp, J. M. Weeks & T. M. Williams, 1999. Evaluation of the impacts of land-based contaminants on the benthic faunas of Jakarta Bay, Indonesia. Oceanol. Acta 22: 627-640.Google Scholar
  38. Roesijadi, G. & W. E. Robinson, 1994. Metal regulation in aquatic animals: mechanisms of uptake, accumulation and release. In Malius, D. C. & G. K. Ostrander (eds), Aquatic Toxicity, Molecular, Biochemical and Cellular Perspectives. Boca Raton: Lewis Publishers: 387-420.Google Scholar
  39. Roesijadi, G., 1980. The significance of low molecular weight, metallothionein-like protein in marine invertebrates: current status. Mar. Envir. Res. 4: 167-179.Google Scholar
  40. Roesijadi, G., 1992. Metallothionein inmetal regulation and toxicity in aquatic animals. Aquat. Toxicol. 22: 81-113.Google Scholar
  41. Senthilnathan, S., T. Balasubramanian & V. K. Venugopalan, 1998. Metal concentration in mussel Perna viridis (Bivalvia/Anisomyaria) and oyster Crassostrea madrasensis (Bivalvia/ Anisomyaria) from some parts in southeast coast of India. Ind. J. mar. Sci. 27: 206-210.Google Scholar
  42. Sivalingam, P. M. & B. Bhaskaran, 1980. Experimental insight of trace metal environmental pollution problems in mussel farming. Aquaculture 20: 291-303.Google Scholar
  43. Sivalingam, P. M., 1977. Aquaculture of the green mussel, Mytilus viridis Linnaues, in Malaysia. Aquaculture 11: 297-312.Google Scholar
  44. Sukasem, P. & M. S. Tabucanon, 1993. Monitoring heavy metals in the Gulf of Thailand using Mussel Watch approach. Sci. Tot. Environ. 139/140: 297-305.Google Scholar
  45. Taylor, D., 1983. The significance of the accumulation of cadmium by aquatic organisms. Ecotoxicol. Envir. Safety 7: 33-42.Google Scholar
  46. Viarengo, A., M. Pertica, G. Mancinelli, R. Capelli & M. Orunesu, 1980. Effects of copper on the uptake of amino acids, on protein synthesis and on ATP content in different tissues of Mytilus galloprovincialis (Lam.). Mar. Envir. Res. 4: 145-152.Google Scholar
  47. Viarengo, A., S. Palmero, G. Zanicchi, R. Capelli, R. Vaissiere & M. Orunesu, 1985. Role of metallothioneins in Cu and Cd accumulation and elimination in the gill and digestive gland cells of Mytilus galloprovincialis (Lam.). Mar. Envir. Res. 16: 23-36.Google Scholar
  48. Webb, M., 1987. Toxicological significance of metallothionein. Experientia, Supplement 52: 109-134.Google Scholar
  49. Widdows, J. & P. Donkin, 1992. Mussel and environmental contaminants: bioaccumulation and physiological aspects. In Gosling, E. (ed.), The Mussel Mytilus: Ecology, Physiology, Genetics and Culture. Elseviers Science Publishers, Amsterdam: 383-424.Google Scholar
  50. Wong, C. K., R. Y. H. Cheung & M. H. Wong, 2000. Heavy metal concentrations in green-lipped mussels collected from Tolo Harbour and markets in Hong Kong and Shenzhen. Envir. Poll. 109: 165-171.Google Scholar
  51. Yang, M. S. & J. A. J. Thompson, 1996. Binding of endogenous copper and zinc to cadmium-induced proteins in various tissues of Perna viridis. Arch. Envir. Contam. Toxicol. 30: 267-273.Google Scholar
  52. Yap, C. K., A. Ismail, S. G. Tan & I. Abdul Rahim, 2003. Can the shell of the green-lipped mussel Perna viridis (Linnaeus) from the west coast of Peninsular Malaysia be a potential biomonitoring material for Cd, Pb and Zn? Estuar. coast. Sci. In press.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • C. K. Yap
    • 1
  • A. Ismail
    • 1
  • S. G. Tan
    • 1
  • H. Omar
    • 1
  1. 1.Department of Biology, Faculty of Science and Environmental StudiesUniversiti Putra Malaysia, UPMSerdang, SelangorMalaysia

Personalised recommendations