Skip to main content
Log in

Toward an Understanding of the Molecular Mechanisms of Ventricular Fibrillation

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

A major goal of basic research in cardiac electrophysiology is to understand the mechanisms responsible for ventricular fibrillation (VF). Here we review recent experimental and numerical results, from the ion channel to the organ level, which might lead to a better understanding of the cellular and molecular mechanisms of VF. The discussion centers on data derived from a model of stable VF in the Langendorff-perfused guinea pig heart that demonstrate distinct patterns of organization in the left (LV) and right (RV) ventricles. Analysis of optical mapping data reveals that VF excitation frequencies are distributed throughout the ventricles in clearly demarcated domains. The highest frequency domains are usually found on the anterior wall of the LV, demonstrating that a high frequency reentrant source (a rotor) that remains stationary in the LV is the mechanism that sustains VF in this model. Computer simulations predict that the inward rectifying potassium current (I K1) is an essential determinant of rotor stability and rotation frequency, and patch-clamp results strongly suggest that the outward component of the background current (presumably I K1) of cells in the LV is significantly larger in the LV than in the RV. These data have opened a new and potentially exciting avenue of research on the possible role played by inward rectifier channels in the mechanism of VF and may lead us toward an understanding of its molecular basis and hopefully lead to new preventative approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Myerburg RJ, Castellanos A. Cardiac arrest and sudden cardiac death. In: Braunwald E, ed. Heart Disease: A Molecular Mechanisms of VF 127 Textbook of Cardiovascular Medicine. Philadelphia, PA: W.B. Saunders, 1997:742–779.

    Google Scholar 

  2. Zipes DP, Wellens HJ. Sudden cardiac death. Circulation 1998;98:2334–2351.

    Google Scholar 

  3. Myerburg RJ, Spooner PM. Opportunities for sudden death prevention: Directions for new clinical and basic research. Cardiovasc Res 2001;50:177–185.

    Google Scholar 

  4. Wiggers CJ. The mechanism and nature of ventricular fibrillation. American Heart Journal 1940;20:399–412.

    Google Scholar 

  5. Lewis T. The Mechanism and Graphic Registration of the Heart Beat, 3rd ed. Shaw, London 1925:319–374.

    Google Scholar 

  6. Krinskii VI. Excitation propagation in nonhomogenous medium (actions analogous to heart fibrillation). Biofizika 1966;11:676–683.

    Google Scholar 

  7. Winfree AT. Suppressing Drosophila circadian rhythm with dim light. Science 1974;183:970–972.

    Google Scholar 

  8. Allessie MA, Bonke FI, Schopman FJ. Circus movement in rabbit atrial muscle as a mechanism of tachycardia, III: The “leading circle” concept: A new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ Res 1977;41:9–18.

    Google Scholar 

  9. Panfilov AV. Spiral breakup as a model of ventricular fibrillation. Chaos 1998;8:57–64.

    Google Scholar 

  10. Karma A. Electrical alternans and spiral wave breakup in cardiac tissue. Chaos 1994;4:461–472.

    Google Scholar 

  11. Fenton F, Karma A. Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. Chaos 1998;8:20–47.

    Google Scholar 

  12. Riccio ML, Koller ML, Gilmour RF, Jr. Electrical restitution and spatiotemporal organization during ventricular fibrillation. Circulation Research 1999;84:955–963.

    Google Scholar 

  13. Chen PS, Wolf PD, Dixon EG, Danieley ND, Frazier DW, Smith WM, Ideker RE. Mechanism of ventricular vulnerability to single premature stimuli in open-chest dogs. Circulation Research 1988;62:1191–1209.

    Google Scholar 

  14. Frazier DW, Wolf PD, Wharton JM, Tang AS, Smith WM, Ideker RE. Stimulus-induced critical point. Mechanism for electrical initiation of reentry in normal canine myocardium. Journal of Clinical Investigation 1989;83:1039–1052.

    Google Scholar 

  15. Witkowski FX, Leon LJ, Penkoske PA, Giles WR, Spano ML, Ditto WL, Winfree AT. Spatiotemporal evolution of ventricular fibrillation. Nature 1998;392:78–82.

    Google Scholar 

  16. Garfinkel A, Kim YH, Voroshilovsky O, Qu ZL, Kil JR, Lee MH, Karagueuzian HS, Weiss JN, Chen PS. Preventing ventricular fibrillation by flattening cardiac restitution. Proceedings of the National Academy of Sciences of USA 2000;97:6061–6066.

    Google Scholar 

  17. Weiss JN, Garfinkel A, Karagueuzian HS, Qu Z, Chen PS. Chaos and the transition to ventricular fibrillation: A new approach to antiarrhythmic drug evaluation. Circulation 1999;99:2819–2826.

    Google Scholar 

  18. Nolasco JB, Dahlen RW. A graphic method for the study of alternation in cardiac action potentials. Journal of Applied Physiology 1968;25:191–196.

    Google Scholar 

  19. Chialvo DR, Gilmour RF, Jr., Jalife J. Low dimensional chaos in cardiac tissue. Nature 1990;343:653–657.

    Google Scholar 

  20. Watanabe M, Otani NF, Gilmour RF, Jr. Biphasic restitution of action potential duration and complex dynamics in ventricular myocardium. Circulation Research 1995;76:915–921.

    Google Scholar 

  21. Gilmour RF, Jr., Otani NF, Watanabe MA. Memory and complex dynamics in cardiac Purkinje fibers. American Journal of Physiology 1997;272:H1826–H1832.

    Google Scholar 

  22. Davidenko JM, Pertsov AV, Salomonsz R, Baxter W, Jalife J. Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 1992;355:349–351.

    Google Scholar 

  23. Pertsov AM, Davidenko JM, Salomonsz R, Baxter WT, Jalife J. Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle. Circulation Research 1993;72:631–650.

    Google Scholar 

  24. Gray RA, Jalife J, Panfilov AV, Baxter WT, Cabo C, Davidenko JM, Pertsov AM. Mechanisms of cardiac fibrillation. Science 1995270:1222–1223.

    Google Scholar 

  25. Gray RA, Pertsov AM, Jalife J. Spatial and temporal organization during cardiac fibrillation. Nature 1998;392:75–78.

    Google Scholar 

  26. Jalife J, Gray R. Drifting vortices of electrical waves underlie ventricular fibrillation in the rabbit heart. Acta Physiologica Scandinavica 1996;157:123–131.

    Google Scholar 

  27. Jalife J, Gray RA, Morley G, Davidenko J. Self-organization and the dynamical nature of ventricular fibrillation. Chaos 1998;8:79–93.

    Google Scholar 

  28. Jalife J, Berenfeld O, Skanes A, Mandapati R. Mechanisms of atrial fibrillation: Mother rotors or multiple daughter wavelets, or both? Journal of Cardiovascular Electrophysiology 1998;9:S2–S12.

    Google Scholar 

  29. Samie FH, Mandapati R, Gray RA, Watanabe Y, Zuur C, Beaumont J, Jalife J. A mechanism of transition from ventricular fibrillation to tachycardia: Effect of calcium channel blockade on the dynamics of rotating waves. Circulation Research 2000;86:684–691.

    Google Scholar 

  30. Chen J, Mandapati R, Berenfeld O, Skanes AC, Jalife J. High-frequency periodic sources underlie ventricular fibrillation in the isolated rabbit heart. Circulation Research 2000;86:86–93.

    Google Scholar 

  31. Zaitsev AV, Berenfeld O, Mironov SF, Jalife J, Pertsov AM. Distribution of excitation frequencies on the epicardial and endocardial surfaces of fibrillating ventricular wall of the sheep heart. Circulation Research 2000;86:408–417.

    Google Scholar 

  32. Samie FH, Berenfeld O, Anumonwo J, Mironov SF, Udassi S, Beaumont J, Taffet S, Pertsov AM, Jalife J. Rectification of the background potassium current: A determinant of rotor dynamics in ventricular fibrillation. Circ Res 2001;89(12):1216–1223.

    Google Scholar 

  33. Gray RA, Jalife J, Panfilov A, Baxter WT, Cabo C, Davidenko JM, Pertsov AM. Nonstationary vortexlike reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart. Circulation 1995;91:2454–2469.

    Google Scholar 

  34. Boersma L, Brugada J, Kirchhof C, Allessie M. Mapping of reset of anatomic and functional reentry in anisotropic rabbit ventricular myocardium. Circulation 1994;89:852–862.

    Google Scholar 

  35. Priori SG, Napolitano C, Cantu F, Brown AM, Schwartz PJ. Differential response to Na+ channel blockade, beta-adrenergic stimulation, and rapid pacing in a cellular model mimicking the SCN5A and HERG defects present in the long-QT syndrome. Circulation Research 1996;78:1009–1015.

    Google Scholar 

  36. Beaumont J, Jalife J. Rotors and spiral waves in two dimensions. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology from Cell to Bedside. Philadelphia, PA: W.B. Saunders, 2000:327–335.

    Google Scholar 

  37. Starmer CF, Romashko DN, Reddy RS, Zilberter YI, Starobin J, Grant AO, Krinsky VI. Proarrhythmic response to potassium channel blockade. Numerical studies of polymorphic tachyarrhythmias. Circulation 1995;92:595–605.

    Google Scholar 

  38. Beaumont J, Davidenko N, Davidenko JM, Jalife J. Spiral waves in two-dimensional models of ventricular muscle: Formation of a stationary core. Biophysical Journal 1998;75:1–14.

    Google Scholar 

  39. Warren MD, Berenfeld O, Guha PK, Chen J, Samie FH, Zaitsev AV, Rabi FA, Jalife J. I K1 blockade reduces frequency, increases organization and terminates ventricular fibrillation in the guinea pig heart. PACE 2001;24:647.

    Google Scholar 

  40. Preisig-Muller R, Schlichthorl G, Goerge T, Heinen S, Bruggemann A, Rajan S, Derst C, Veh RW, Daut J. Heteromerization of Kir2.x potassium channels contributes to the phenotype of Andersen's syndrome. Proc Natl Acad Sci USA 2002 May 28;99(11):7774–7779.

    Google Scholar 

  41. Ishihara, K, Hiraoka, M. Gating mechanism of the cloned inward rectifier potassium channel from mouse heart. J Membr Biol 1994;142:55–64.

    Google Scholar 

  42. Nichols CG, Lopatin AN. Inward rectifier potassium channels. Annu Rev Physiol 1997;59:171–191.

    Google Scholar 

  43. Nerbonne JM. Molecular basis of functional voltage-gated K+ channel diversity in the mammalian myocardium. J Physiol 2000;525 Pt 2:285–298.

    Google Scholar 

  44. Yang J, Jan YN, Jan LY. Determination of the subunit stoichiometry of an inwardly rectifying potassium channel. Neuron 1995;15:1441–1447.

    Google Scholar 

  45. Glowatzki E, Fakler G, Brandle U, Rexhausen U, Zenner HP, Ruppersberg JP, Fakler B. Subunit-dependent assembly of inward-rectifier K+channels. Proc R Soc Lond B Biol Sci 1995;261:251–261.

    Google Scholar 

  46. Tinker A, Jan YN, Jan LY. Regions responsible for the assembly of inwardly rectifying potassium channels. Cell 1996;87:857–868.

    Google Scholar 

  47. Cohen NA, Sha Q, Makhina EN, Lopatin AN, Linder ME, Snyder SH, Nichols CG. Inhibition of an inward rectifier potassium channel (Kir2.3) by G-protein betagamma sub-units. Journal of Biological Chemistry 1996;271:32301–32305.

    Google Scholar 

  48. Fink M, Duprat F, Heurteaux C, Lesage F, Romey G, Barhanin J, Lazdunski M. Dominant negative chimeras provide evidence for homo and heteromultimeric assembly of inward rectifier K+ channel proteins via their N-terminal end. FEBS Letters 1996;378:64–68.

    Google Scholar 

  49. Kubo Y, Reuveny E, Slesinger PA, Jan YN, Jan LY. Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature 1993;364:802–806.

    Google Scholar 

  50. Heginbotham L, Abramson T, MacKinnon R. A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels. Science 1992;258(5085):1152–1155.

    Google Scholar 

  51. Hartmann HA, Kirsch GE, Drewe JA, Taglialatela M, Joho RH, Brown AM. Exchange of conduction pathways between two related K+ channels. Science 1991;251:942–944.

    Google Scholar 

  52. MacKinnon R, Yellen G. Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. Science 1990;250:276–279.

    Google Scholar 

  53. Yool AJ, Schwarz TL. Alteration of ionic selectivity of a K+ channel by mutation of the H5 region. Nature 1991;349:700–704.

    Google Scholar 

  54. Doyle DA, Morais CJ, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 1998;280:69–77.

    Google Scholar 

  55. Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, Hebert SC. Cloning and expression of an inwardly rectifyingATP-regulated potassium channel. Nature 1993;362:31–38.

    Google Scholar 

  56. Kubo Y, Baldwin TJ, Jan YN, Jan LY. Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 1993;362(6416):127–133.

    Google Scholar 

  57. Noma A, Peper K, Trautwein W. Acetylcholine-induced potassium current fluctuations in the rabbit sino-atrial node. Pflugers Archiv—European Journal of Physiology 1979;381:255–262.

    Google Scholar 

  58. Soejima M, Noma A. Mode of regulation of the ACh-sensitive K-channel by the muscarinic receptor in rabbit atrial cells. Pflugers Archiv—European Journal of Physiology 1984;400:424–431.

    Google Scholar 

  59. Noma A, Takano M. The ATP-sensitive K+ channel. Jpn J Physiol 1991;41:177–187.

    Google Scholar 

  60. Fujita A, Kurachi Y. Molecular aspects of ATP-sensitive K+ channels in the cardiovascular system and K+ channel openers. Pharmacol Ther 2000;85:39–53.

    Google Scholar 

  61. Zhou X, Wolf PD, Smith WM, Blanchard SM, Ideker RE. Effects of peroneal nerve stimulation on hypothalamic stimulation-induced ventricular arrhythmias in rabbits. American Journal of Physiology 1994;267:H2032–H2041.

    Google Scholar 

  62. Kubo Y, Iizuka M. Identification of domains of the cardiac inward rectifying K+ channel, CIR, involved in the heteromultimer formation and in the G-protein gating. Biochemical & Biophysical Research Communications 1996;227:240–247.

    Google Scholar 

  63. Nichols CG, Makhina EN, Pearson WL, Sha Q, Lopatin AN. Inward rectification and implications for cardiac excitability. Circulation Research 1996;78:1–7.

    Google Scholar 

  64. Shimoni Y, Clark RB, Giles WR. Role of an inwardly rectifying potassium current in rabbit ventricular action potential. J Physiol 1992;448:709–727.

    Google Scholar 

  65. Katz B. Les constantes electriques de la membrane du muscle. Arch Sci Physiol 1949;2:285–299.

    Google Scholar 

  66. Armstrong CM. Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection in squid axons. Journal of General Physiology 1969;54:553–575.

    Google Scholar 

  67. Vandenberg CA. Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions. Proceedings of the National Academy of Sciences of USA 1987;84:2560–2564.

    Google Scholar 

  68. Matsuda H. Effects of external and internal K+ ions on magnesium block of inwardly rectifying K+ channels in guinea-pig heart cells. Journal of Physiology 1991;435:83–99.

    Google Scholar 

  69. Fakler B, Brandle U, Bond C, Glowatzki E, Konig C, Adelman JP, Zenner HP, Ruppersberg JP. A structural determinant of differential sensitivity of cloned inward rectifier K+ channels to intracellular spermine. FEBS Letters 1994;356:199–203.

    Google Scholar 

  70. Lopatin AN, Makhina EN, Nichols CG. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 1994;372:366–369.

    Google Scholar 

  71. Ficker E, Taglialatela M, Wible BA, Henley CM, Brown AM. Spermine and spermidine as gating molecules for inward rectifier K channels. Science 1994;266:1068–1072.

    Google Scholar 

  72. Liu GX, Derst C, Schlichthorl G, Heinen S, Seebohm G, Bruggemann A, Kummer W, Veh RW, Daut J, Preisig-Muller R. Comparison of cloned Kir2 channels with native Molecular Mechanisms of VF 129 inward rectifier K+ channels from guinea-pig cardiomyocytes. JPhysiol 2001;532:115–126.

    Google Scholar 

  73. Warren M, Guha PK, Berenfeld O, Zaitsev A, Anumonwo JMB, Dhamoon AS, Bagwe S, Taffet SM, Jalife J. Blockade of the inward rectifying potassium current terminates ventricular fibrillation in the guinea pig heart. Journal of Cardiovascular Electrophysiology, 2003;14:621–631.

    Google Scholar 

  74. Dhamoon AS, Bagwe S, Guha P, Anumonwo JMB, Taffet SM, Jalife J. Differential expression and whole-cell rectification profiles of guinea pig Kir2.x channels. (Abstract) Biophys J 2002:587a.

  75. Plaster NM, Tawil R, Tristani-Firouzi M, Canun S, Bendahhou S, Tsunoda A, Donaldson MR, Iannaccone ST, Brunt E, Barohn R, Clark J, Deymeer F, George AL, Fish FA, Hahn A, Nitu A, Ozdemir C, Serdaroglu P, Subramony SH, Wolfe G, Fu Y, Ptacek LJ. Mutations in kir2.1 cause the developmental and episodic electrical phenotypes of andersen's syndrome. Cell 2001;105:511–519.

    Google Scholar 

  76. Tristani-Firouzi M, Jensen JL, Donaldson MR, Sansone V, Meola G, Hahn A, Bendahhou S, Kwiecinski H, Fidzianska A, Plaster N, Fu YH, Ptacek LJ, Tawil R. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest 2002;110:381–388.

    Google Scholar 

  77. Wang Z, Yue L, White M, Pelletier G, Nattel S. Differential distribution of inward rectifier potassium channel transcripts in human atrium versus ventricle. Circulation 1998;98:2422–2428.

    Google Scholar 

  78. Mandapati R, Asano Y, Baxter WT, Gray R, Davidenko J, Jalife J. Quantification of effects of global ischemia on dynamics of ventricular fibrillation in isolated rabbit heart. Circulation 1998;98:1688–1696.

    Google Scholar 

  79. Starobin JM, Zilberter YI, Rusnak EM, Starmer CF. Wavelet formation in excitable cardiac tissue: The role of wavefront-obstacle interactions in initiating highfrequency fibrillatory-like arrhythmias. Biophysical Journal 1996;70:581–594.

    Google Scholar 

  80. Nanthakumar K, Huang J, Rogers JM, Johnson PL, Walcott GP, Newton JC, Ideker RE. Do the Wandering Wavelets Seen in Large Fibrillating Hearts Spread in Random Direction? PACE 2002;25:635.

    Google Scholar 

  81. Rogers JM, Huang J, Melnick SB, Ideker RE. Sustained Reentry in Fibrillating Pig Ventricles. PACE 2002;25:627.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Jalife.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalife, J., Anumonwo, J.M. & Berenfeld, O. Toward an Understanding of the Molecular Mechanisms of Ventricular Fibrillation. J Interv Card Electrophysiol 9, 119–129 (2003). https://doi.org/10.1023/A:1026215919730

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026215919730

Navigation