Arp, A. J., J. J. Childress & R. D. Vetter, 1987. The sulphide-binding protein in the blood of the vestimentiferan tube-worm, Riftia pachyptila, is the extracellular haemoglobin. J. exp. Biol. 128: 139–158.
Google Scholar
Black, M. B., K. M. Halanych, P. A. Y. Maas, W. R. Hoeh, J. Hashimoto, D. Desbruyères, R. A. Lutz & R. C. Vrijenhoek, 1997. Molecular systematics of vestimentiferan tubeworms from hydrothermal vents and cold-water seeps. Mar. Biol. 130: 141–149.
Google Scholar
Bartolomaeus, T., 1995. Structure and formation of the uncini in Pectinaria koreni, Pectinaria auricoma (Terebellida) and Spirorbis spiorbis (Sabellida): implications for annelid phylogeny and the position of the Pogonophora. Zoomorphology 115: 161–177.
Google Scholar
Boore, J. L. & W. M. Brown, 2000. Mitochondrial genomes of Galathealinum, Helobdella, and Platynereis: sequence and gene arrangement comparisons indicate that Pogonophora is not a phylum and Annelida and Arthropoda are not sister taxa. Mol. Biol. Evol. 17: 87–106.
PubMed
Google Scholar
Cavanaugh, C. M., S. L. Gardiner, M. L. Jones, H. W. Jannasch & J. B. Waterbury, 1981. Prokaryotic cells in the hydorthermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213: 340–342.
Google Scholar
Childress, J. J. & C. R. Fisher, 1992. The biology of hydrothermal vent animals: physiology, biochemistry and autotrophic symbiosis. In Barnes, M. (ed.), Oceanography and Marine Biology Annual Review Vol. 30. Aberdeen University Press, Aberdeen: 337–441.
Google Scholar
Craddock, C., W. R. Hoeh, R. G. Gustafson, R. A. Lutz, J. Hashimoto & R. J. Vrijenhoek, 1995. Evolutionary relationships among deep-sea mytilids (Bivalvia: Mytilidae) from hydrothermal vents and cold-water methane/sulfide seeps. Mar. Biol. 121: 477–485.
Google Scholar
Dando, P. R., A. J. Southward, E. C. Southward, D. R. Dixon, A. Crawford & M. Crawford, 1992. Shipwrecked tubeworms. Nature 356: 667.
Google Scholar
Felbeck, H, 1981. Chemoautotrophic potential of the hydrothermal vent tubeworm Riftia pachyptila. Science 213: 336–338.
Google Scholar
Feldman, R.A., M. B. Black, C. S. Cary, R.A. Lutz & R. C. Vrijenhoek, 1997. Molecular phylogenetics of bacterial endosymbionts and their vestimentiferan hosts. Mol. Mar. Bio. Biotechnol. 6: 268–277.
Google Scholar
Fisher, C. R., 1996. Ecophysiology of primary production at deepsea vents and seeps. In Uiblein, F., J. Ott & M. Stachowtisch (eds), Deep-Sea and Extreme Shallow-Water Habitats: Affinities and Adaptations. Biosystematics and Ecology Series Vol. 11: 313–336.
Green, A. W., T. Gotoh, T. Suzuki, F. Zal, F. H. Lallier, A. Toulmond & S. N. Vinogradov, 2001. Observations of large, noncovalent globin subassemblies in the appr. 3600 KDa hexagonal bilayer hemoglobins by electrospray ionization time-of-flight spectrometry. J. Mol. Biol. 309: 553–560.
PubMed
Google Scholar
Halanych, K. M., R. A. Lutz & R. C. Vrijenhoek, 1998. Evolutionary origins and age of vestimentiferan tube-worms. Cah. Biol. Mar. 39: 355–358.
Google Scholar
Halanych, K. M., R. A. Feldman & R. C. Vrijenhoek, 2001. Molecular evidence that Sclerolinum brattstromi is closely related to vestimentiferans, not frenulate pogonophorans (Siboglinidae, Annelida). Biol. Bull. 201: 65–75.
PubMed
Google Scholar
Hutchings, P. A., 2000. Familiy Oweniidae. In Beesley, P. L., G. J. B. Ross & C. J. Glasby (eds), Polychaetes and Allies: The Southern Synthesis. Fauna of Australia Vol. 4A. CSIRO Publishing, Melbourne: 173–176.
Google Scholar
Ivanov, A. V., 1963. Pogonophora. Academic Press, London. 479 pp.
Google Scholar
Jones, M. L., 1981. Riftia pachyptila, new genus, new species, the vestimentiferan from the Galapagos Rift geothermal vents (Pogonophora). Proc. natl. Acad. Sci. 93: 1295–1313.
Google Scholar
Jones, M. L., 1985. On the Vestimentifera, new phylum: six new species, and other taxa, from hydrothermal vents and elsewhere. Bull. Biol. Soc. Wash. 6: 117–185.
Google Scholar
Kojima, S., T. Hashimoto, M. Hasegawa, S. Murata, S. Ohta, H. Seki & N. Okada, 1993. Close phylogenetic relationship between Vestimentifera (tube worms) and Annelida revealed by the amino acid sequence of elongation factor-1?. J. Mol. Evol. 37: 66–70.
PubMed
Google Scholar
Main, M. B. & W. G. Nelson, 1988. Tolerance of the Sabellariid polychaete Phragmatopoma lapidosa Kinberg to burial, turbidity and hydrogen sulfide. Mar. Environ. Res. 26: 39–55.
Google Scholar
McHugh, D., 1997. Molecular evidence that echiurans and pogonophorans are derived annelids. Proc. natl. Acad. Sci. U.S.A. 94: 8006–8009.
PubMed
Google Scholar
Newman, W. A., 1985. The abyssal hydrothermal vent invertebrate fauna: a glimpse of antiquity? Bull. Biol. Soc.Wash. 6: 231–242.
Google Scholar
Peek, A. S., R. G. Gustafson & R. C. Vrijenhoek, 1997. Evolutionary relationships of deep-sea hydrothermal vent and coldwater seep clams (Bivalvia: Vesicomyidae): results from the mitochondrial cytochrome oxidase subunit I. Mar. Biol. 130: 151–161.
Google Scholar
Powell, M. A. & G. N. Somero, 1983. Blood components prevent sulfide poisoning of respiration of the hydrothermal vent tubeworm. Science 219: 297–299.
Google Scholar
Rau, G. H., 1981. Hydrothermal vent clam and vent tubeworm 13C/12C: further evidence of a nonphotosynthetic food source. Science 213: 338–339.
Google Scholar
Rouse, G., 2001. A cladistic analysis of Siboglinidae Caullery, 1914 (Polychaeta, Annelida): formerly the phyla Pogonophora and Vestimentifera. Zool. J. linn. Soc. 132: 55–80.
Google Scholar
Rouse, G. & K. Fauchald, 1995. The articulation of annelids. Zool. Scr. 24: 269–301.
Google Scholar
Rouse, G. & K. Fauchald, 1997. Cladistics and the polychaetes. Zool. Scr. 26: 139–204.
Google Scholar
Schulze, A. in press. Phylogeny of Vestimentifera (Siboglinidae, Annelida) inferred from morphology. Zool. Scr.
Scott, K. M. & C. R. Fisher, 1995. Physiological ecology of sulfide metabolism in hydrothermal vent and cold seep vesicomyid clams and vestimentiferan tube worms. Am. Zool. 35: 102–111.
Google Scholar
Shank, T., M. B. Black, K. M. Halanych, R. A. Lutz & R. C. Vrijenhoek, 1999. Miocene radiation of deep-sea hydrothermal vent shrimp (Caridea: Bresiliidae): evidence from mitochondrial cytochrome oxidase subunit 1. Mol. Phylogenet. Evol. 13: 244–254.
PubMed
Google Scholar
Sibuet, M. & K. Olu, 1998. Biogeography, biodiversity, and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Res. II 45: 517–567.
Google Scholar
Smith, R. P., R. C. Cooper, T. Engen, E. R. Hendrickson, M. Katz, T. H. Milby, J. B. Mudd, A. T. Rossano & J. Redmund Jr., 1979. Hydrogen Sulfide. University Park Press, Baltimore. 183 pp.
Google Scholar
Southward, A. J., & E. C. Southward, 1981. Dissolved organic matter and the nutrition of the Pogonophora: a reassessment based on recent studies of their morphology and biology. Kieler Meeresforsch. 5: 445–453.
Google Scholar
Southward, E. C., 1972. On some Pogonophora from the Caribbean and the Gulf of Mexico. Bull. mar. Sci. 22: 739–776.
Google Scholar
Southward, E. C., 1988. Development of the gut and segmentation of newly settled stages of Ridgeia (Vestimentifera): Implications for the relationship between Vestimentifera and Pogonophora. J. mar. biol. Ass. U.K. 68: 465–487.
Google Scholar
Southward, E. C., 1993. Pogonophora. In Harrison, F. W. & Rice, M. E. (eds), Onychophora, Chilopoda, and Lesser Protostomata. Microscopic Anatomy of the Invertebrates Vol. 12, Wiley-Liss (NY): 327–369.
Southward, E. C., 1999. Development of Perviata and Vestimentifera (Pogonophora). Hydrobiologia 402: 185–202.
Google Scholar
Southward, E. C., 2000. Class Pogonophora. In P. L. Beesley, G. J. B. Ross & C. J. Glasby (eds), Polychaetes and Allies: The Southern Synthesis. Fauna of Australia Vol. 4A. CSIRO Publishing, Melbourne: 331–351.
Google Scholar
Suzuki, T., T. Takagi, T. Furokohri & S. Ohta, 1989. The deepsea tube worm hemoglobin: subunit structure and phylogenetic relationship with annelid hemoglobin. Zool. Scr. 6: 915–926.
Google Scholar
Suzuki, T., T. Takagi & S. Ohta, 1993. N-Terminal amino acid sequences of 440 kDa hemoglobins of the deep-sea tube worms, Lamellibrachia sp.1, Lamellibrachia sp. 2 and slender vestimentifera gen. sp. 1 evolutionary relationship with annelid hemoglobins. Zool. Sci. 10: 141–146.
PubMed
Google Scholar
Terwilliger, R. C., N. B. Terwilliger, G. M. Hughes, A. J. Southward & E. C. Southward, 1987. Studies on the haemoglobins of the small Pogonophora. J. mar. biol. Ass. U.K. 67: 219–234.
Google Scholar
Tunnicliffe, V., 1988. Biogeography and evolution of hydrothermalvent fauna in the eastern Pacific Ocean. Proc. r. Soc. Lond. B 233: 347–366.
Google Scholar
Tunnicliffe, V., A. G. McArthur. & D. McHugh, 1998. A biogeographical perspective of the deep-sea hydrothermal vent fauna. Adv. mar. Biol. 34: 353–442.
Google Scholar
Uschakov, P. V., 1933. Eine neue Form aus der Familie Sabellidae (Polychaeta). Zool. Anz. 104: 205–208.
Google Scholar
Van der Land, J. & A. Nørrevang, 1975. The systematic position of Lamellibrachia (Annelida, Vestimentifera). Z. zool. Syst. Evol.-forsch., Sonderheft 1: 86–101.
Google Scholar
Van Dover, C. L., 2000. The Ecology of Deep-Sea Hydrothermal Vents. Princeton University Press, Princeton (NJ). 424 pp.
Google Scholar
Warren, L. M. & R. P. Dales, 1980. Glucose degradation in the polychaete annelid Owenia fusiformis Delle Chiaje under anaerobic conditions. Comp. Biochem. Phys. 65B: 443–445.
Google Scholar
Webb, M., 1964. The posterior extremity of Siboglinum fiordicum (Pogonophora). Sarsia 15: 33–36.
Google Scholar
Webb, M., 1969. Lamellibrachia barhami, gen. nov., spec. nov. (Pogonophora) from the Northeast Pacific. Bull. mar. Sci. 19: 18–47.
Google Scholar
Weber, R. E., 1980. Functions of invertebrate hemoglobins with special reference to adaptations to envrionmental hypoxia. Am. Zool. 20: 79–101.
Google Scholar
Wells, R. G. M., R. P. Dales & L. M. Warren, 1981. Oxygen equilibrium characteristics of the erythrocruorin (extracellular hemoglobin) from Owenia fusiformis Delle Chiaje (Polychaeta: Oweniidae). Comp. Biochem. Physiol. A70: 11–113.
Google Scholar
Williams, N. C., D. R. Dixon, E. C. Southward & P. W. H. Holland, 1993. Molecular evolution and diversification of the vestimentiferan tube worms. J. mar. biol. Ass. U.K. 73: 437–452.
Google Scholar
Young, C. M., E. Vázquez, A. Metaxas & P. A. Tyler, 1996. Embryology of vestimentiferan tube worms from deep-sea methane/ sulphide seeps. Nature 381: 514–516.
Google Scholar
Yuasa, H. J., B. N. Green, T. Takagi, N. Suzuki, S. N. Vinogradov & T. Suzuki, 1996. Electrospray ionization mass spectrometric composition of the 400 kDa hemoglobin from the pogonophoran Oligobrachia mashikoi and the primary structures of three major globin chains. Biochim. Biophys. Acta 1296: 235–244.
PubMed
Google Scholar
Zal, F., F. H. Lallier, B. N. Green, S. N. Vinogradov & A. Toulmond, 1996. The multi-hemoglobin system of the hydrothermal vent tube worm Riftia pachyptila. J. Biol. Chem. 271: 8875–8881.
PubMed
Google Scholar