Skip to main content
Log in

Electrochemical Behavior of Electrodes Containing Single-Walled Nanotubes

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The differential capacitance and voltammograms of electrodes that contain single-walled carbon nanotubes are measured in aqueous electrolytes. The discovered dependence of the capacitance on the measurement frequency is attributed to structural features of nanomaterials used. Electrochemical characteristics of nanotube electrodes are close to those of glassy carbon electrodes, with the difference that the discharge current in the former is substantially higher at cathodic potentials in the presence of N2O. This effect is presumably caused by an autoelectron emission of electrons from nanotubes into electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campbell, J.K., Sun, Li, and Crooks, R.M., J. Am. Chem. Soc., 1999, vol. 121, p. 3779.

    Google Scholar 

  2. Sumanasekera, G.U., Allen, J.I., Fang, S.L., Loper, A.L., Rao, A.M., and Eklund, P.C., J. Phys. Chem. B, 1999, vol. 103, p. 4292.

    Google Scholar 

  3. Rajesh, B., Karthikeyan, S., Bonard, J.-M.K., Thampi, R., and Viswanathan, B., Eurasian Chem.-Tech. J., 2001, vol. 3, p. 11.

    Google Scholar 

  4. Wang, J., Li, M., Shi, Z., Li, N., and Gu, Z., Electrochim. Acta, 2001, vol. 47, p. 651.

    Google Scholar 

  5. Kavan, L., Rapta, P., and Dunsch, L., Chem. Phys. Lett., 2000, vol. 328, p. 363.

    Google Scholar 

  6. Kavan, L., Rapta, P., Dunsch, L., Bronikowski, M.J., Willis, P., and Smalley, R.E., J. Phys. Chem. B, 2001, vol. 105, p. 10764.

    Google Scholar 

  7. Kazaoui, S., Minami, N., Matsuda, N., Kataura, H., and Achiba, Y., Appl. Phys. Lett., 2001, vol. 78, p. 3433.

    Google Scholar 

  8. Vol'fkovich, Yu.M., Rychagov, A.Yu., Efimov, O.N., Tarasov, B.P., Krinichnaya, E.P., Sosenkin, V.E., Nikol'skaya, N.F., and Moravskii, A.P., Elektrokhimiya, 2002, vol. 38, p. 745.

  9. Krestinin, A.V., Kiselev, N.A., Raevskii, A.V., Ryabenko, A.G., Zakharov, D.N., and Zvereva, G.I., Eurasian Chem.-Tech. J., 2003, vol. 5, p. 7.

    Google Scholar 

  10. Chiang, I.W., Brinson, B.E., Huang, A.Y., Willis, P.A., Bronikowski, M.J., Margrave, J.L., Smalley, R.E., and Hauge, R.H., J. Phys. Chem. B, 2001, vol. 105, p. 8297.

    Google Scholar 

  11. Vigolo, B., Penicaud, A., Coulon, C., Sauder, C., Pailler, R., Journet, C., Bernier, P., and Poulin, P., Science, 2000, vol. 290, p. 1331.

    Google Scholar 

  12. Badamshina, E.R., Grigorieva, V.A., Komratova, V.V., Kuzaev, A.I., Ol'khov, Yu.A., Lodygina, V.P., Gorbushina, G.A., and Baturin, S.M., Int. J. Polym. Mater., 1993, vol. 19, p. 117.

    Google Scholar 

  13. Frackowiak, E., Jurewicz, K., Delpeux, S., and Beguin, F., J. Power Sources, 2001, vol. 97-98, p. 822.

    Google Scholar 

  14. Pikaev, A.K., Sovremennaya radiatsionnaya khimiya: Radioliz gazov i zhidkostei (Modern Radiation Chemistry: The Radiolysis of Gases and Liquids), Moscow: Nauka, 1986.

    Google Scholar 

  15. Benderskii, V.A. and Benderskii, A.V., Laser Electrochemistry of Intermediates, New York: CRC Press, 1995.

    Google Scholar 

  16. Lovall, D., Buss, M., Graugnard, E., Andres, R.P., and Reifenberger, R., Phys. Rev. B: Condens. Matter, 2000, vol. 61, p. 5683.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krivenko, A.G., Matyushenko, V.I., Stenina, E.V. et al. Electrochemical Behavior of Electrodes Containing Single-Walled Nanotubes. Russian Journal of Electrochemistry 39, 1137–1140 (2003). https://doi.org/10.1023/A:1026191924676

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026191924676

Navigation