Skip to main content
Log in

Photoconductivity studies of n-type hydrogenated amorphous silicon and microcrystalline silicon

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Photoconductivity techniques serve as useful tools for the characterization of amorphous and microcrystalline silicon. From the link between the majority carrier mobility–lifetime product from steady-state photoconductivity and the position of the Fermi level, useful insight can be gained when comparing sample properties. The temperature dependence of the minority carrier mobility–lifetime product implies that the band-tail region of the density-of-states (DOS) is steeper in microcrystalline silicon than in amorphous silicon. Transient and modulated photoconductivity determine the DOS in the upper half of the band gap, for which we find an exponential variation. We indicate that the Fermi level or quasi-Fermi level impose limitations on the DOS extraction from the measured data. In samples in which the Fermi level is shifted towards the conduction band, the DOS calculation then yields values that are too low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proceedings and Conference Records of recent international conferences like IEEE Photovoltaic Specialists Conference, 2002, International Conference on Amorphous and Microcrystalline Semiconductors, 2002, International Photovoltaic Science and Engineering Conference, 2001.

  2. D. Ritter, E. Zeldov and K. Weiser, Appl. Phys. Lett. 49 (1986) 791.

    Google Scholar 

  3. C. Main, R. BrÜggemann, D. P. Webb and S. Reynolds, Solid State Commun. 83 (1992) 401.

    Google Scholar 

  4. R. BrÜggemann, C. Main, J. Berkin and S. Reynolds, Philos. Mag. B 62 (1990) 29.

    Google Scholar 

  5. J. P. Kleider and C. Longeaud, Solid State Phenom. 44–46 (1995) 597.

    Google Scholar 

  6. R. BrÜggemann, A. Hierzenberger, H. N. Wanka and M. B. Schubert, Mater. Res. Soc. Symp. Proc. 507 (1999) 921.

    Google Scholar 

  7. R. BrÜggemann, J. P. Kleider, C. Longeaud and F. HouzÉ, in “Materials for Information Technology in the New Millennium”, edited by J. M. Marshall, A. G. Petrov, A. Vavrek, D. Nesheva, D. Dimova-Malinovska and J. M. Maud (published by the editors, 2001, Swansea, UK) p. 212.

  8. R. BrÜggemann, J. P. Kleider, C. Longeaud, D. Mencaraglia, J. Guillet, J. E. Bouree and C. Niikura, J. Non-Cryst. Solids 266–269 (2000) 258.

    Google Scholar 

  9. D. A. Anderson and W. E. Spear, Phil. Mag. 36 (1977) 695.

    Google Scholar 

  10. W. Beyer and B. Hoheisel, Solid State Comm. 47 (1983) 573.

    Google Scholar 

  11. J. Kocka, C. E. Nebel and C.-D. Abel, Phil. Mag. B 63 (1991) 221.

    Google Scholar 

  12. H. N. Wanka, Thesis, Universität Stuttgart, 1998.

  13. H. N. Wanka, R. BrÜggemann, C. KÖhler, I. Zrinscak and M. B. Schubert, Mater. Res. Soc. Symp. Proc. 507 (1998) 915.

    Google Scholar 

  14. S. Reynolds, V. Smirnov, C. Main, R. Carius and F. Finger, ibid. 715 (2002) A21.2.

    Google Scholar 

  15. R. BrÜggemann, W. Bronner and M. Mehring, Solid State Commun. 119 (2001) 23.

    Google Scholar 

  16. H.-D. Mohring, C.-D. Abel, R. BrÜggemann and G. H. Bauer, J. Non-Cryst. Solids 210 (1997) 306.

    Google Scholar 

  17. F. Wang and R. Schwarz, Phys. Rev. B 52 (1995) 14586.

    Google Scholar 

  18. I. Balberg, R. Naidis, L. Fonseca, S. Z. Weisz, P. Alpuim, J. P. Conde and V. Cho, Phys. Rev. B 63 (2001) 113201.

    Google Scholar 

  19. R. BrÜggemann, in “Future Directions in Thin Film Science and Technology”, edited by J. M. Marshall, N. Kirov, A. Vavrek and J. M. Maud (World Scientific, Singapore, 1997) p. 80.

    Google Scholar 

  20. R. BrÜggemann, in “Properties of Amorphous Silicon and its Alloys”, edited by T. Searle (IEE, London, 1998) p. 217.

    Google Scholar 

  21. C.-D. Abel and G. H. Bauer, in “Conference Record of the Twenty-first IEEE Photovoltaic Specialists Conference” (IEEE, Piscataway, 1990) p. 1550.

    Google Scholar 

  22. A. Poruba, M. Vanecek, J. Rosa, L. Feitknecht, N. Wyrsch, J. Meier, A. Shah, T. Repman and B. Rech, “Proceedings of the Seventeenth European Photovoltaic Solar Energy Conference” (Munich, 2002) p. 2981.

  23. R. BrÜggemann and J. P. Kleider, Thin Solid Films 403–404 (2002) 30.

    Google Scholar 

  24. C. Main, J. Berkin and A. Merazga, in “New Physical Problems in Electronic Materials”, edited by M. Borissov, N. Kirov, J. M. Marshall and A. Vavrek (World Scientific, Singapore, 1991) p. 55.

    Google Scholar 

  25. F. Finger, S. Klein, T. Dylla, A. L. Baia Neto, O. Vetterl and R. Carius, Mater. Res. Soc. Symp. Proc. 715 (2002) A16.3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brüggemann, R. Photoconductivity studies of n-type hydrogenated amorphous silicon and microcrystalline silicon. Journal of Materials Science: Materials in Electronics 14, 629–633 (2003). https://doi.org/10.1023/A:1026189912090

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026189912090

Keywords

Navigation