Advertisement

Celestial Mechanics and Dynamical Astronomy

, Volume 87, Issue 1–2, pp 129–155 | Cite as

Tidally Induced Volcanism

  • S. J. Peale
Article

Abstract

The dissipation of tidal energy causes the ongoing silicate volcanism on Jupiter's satellite, Io, and cryovolcanism almost certainly has resurfaced parts of Saturn's satellite, Enceladus, at various epochs distributed over the latter's history. The maintenance of tidal dissipation in Io and the occurrence of the same on Enceladus depends crucially on the maintenance of the respective orbital eccentricities by the existence of mean motion resonances with nearby satellites. A formation of the resonances among the Galilean satellites by differential expansion of the satellite orbits from tides raised on Jupiter by the satellites means the onset of the volcanism on Io could be relatively recent. If, on the other hand, the resonances formed by differential migration from resonant interactions of the satellites with the disk of gas and particles from which they formed, Io would have been at least intermittently volcanically active throughout its history. Either means of assembling the Galilean satellite resonances lead to the same constraint on the dissipation function of Jupiter QJ ≲ 106, where the currently high heat flux from Io seems to favor episodic heating as Io's eccentricity periodically increases and decreases. Either of the two models might account for sufficient tidal dissipation in the icy satellite Enceladus to cause at least occasional cryovolcanism over much of its history. However, both models are assumption-dependent and not secure, so uncertainty remains on how tidal dissipation resurfaced Enceladus.

Galilean satellites G Io volcanism tidal effects Enceladus E-ring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acuna, M. H., Neubauer, F. M. and Ness, N. F.: 1981, 'Standing Alfvén wave current system at Io-Voyager 1 observations', J. Geophys Res. 86, 8513-8521.Google Scholar
  2. Aksnes, K. and Franklin, F. A.: 2001, 'Secular acceleration of Io derived from mutual satellite events', Astron. J. 122, 2734-2739.Google Scholar
  3. Anderson, J. D., Schubert, G., Jacobson, R. A., Lau, E. L., Moore, W. B. and Sjogren, W. L.: 1998a, 'Distribution of rock, metals and ices in Callisto', Science 280, 1573-1576.Google Scholar
  4. Anderson, J. D., Schubert, G., Jacobson, R. A., Lau, E. L., Moore, W. B. and Sjogren, W. L.: 1998b, 'Europa's differentiated internal structure: inferences from four Galileo encounters', Science 281, 2019-2022.Google Scholar
  5. Anderson, J. D., Jacobson, R. A., McElrath, T. P., Moore, W. B. and Schubert, G.: 2001, 'Shape, mean radius, gravity field and interior structure of Callisto', Icarus 153, 157-161.Google Scholar
  6. Burns, J. A., Showalter, M. R. and Morfill, G. E.: 1984, 'The ethereal rings of Jupiter and Saturn'. In: R. Greenberg and A. Brahic (eds), Planetary Rings, University of Arizona Press, Tucson, pp. 200-272.Google Scholar
  7. Canup, R. M. and Ward, W. M.: 2002, 'Formation of the Galilean satellites: conditions of Accretion', Astron. J. 124, 3404-3423.Google Scholar
  8. Dermott, S. F. and Thomas, P. C.: 1994, 'The determination of the mass and mean density of Enceladus from its observed shape', Icarus 109, 241-257.Google Scholar
  9. Gavrilov, S. V. and Zharkov, V. N.: 1977, 'Love numbers of the giant planets', Icarus 32, 443-449.Google Scholar
  10. Goldreich, P.: 1965, 'An explanation of the frequent occurrence of commensurable mean motions in the solar system', Mon. Not. R. Astron. Soc. 130, 159-181.Google Scholar
  11. Goldreich, P. and Lynden-Bell, D.: 1969, 'Io, a Jovian unipolar inductor', Astrophys. J. 156, 59-78.Google Scholar
  12. Goldreich, P. and Nicholson, P. D.: 1977, 'Turbulent viscosity and Jupiter's tidal Q', Icarus 30, 301-304.Google Scholar
  13. Goldreich, P. and Soter, S.: 1966, 'Q in the solar system', Icarus 5, 375-389.Google Scholar
  14. Goldstein, S. J. and Jacobs, K. C.: 1995, 'A recalculation of the secular acceleration of Io', Astron. J. 110, 3054-3057.Google Scholar
  15. Greenberg, R.: 1982, 'Orbital evolution of the Galilean satellites'. In: D. Morrison (ed.), Satellites of Jupiter, University of Arizona Press, Tucson, pp. 65-92.Google Scholar
  16. Greenberg, R.: 1987, 'Galilean satellites — evolutionary paths in deep resonance', Icarus 70, 334-347.Google Scholar
  17. Guillot, T., Burrows, A., Hubbard, W. B., Lunine, J. I. and Saumon, D.: 1996, 'Giant planets at small orbital distances', Astrophys. J. 459, L35-L38.Google Scholar
  18. Hamilton, D. P. and Burns, J. A.: 1994, 'Origin of Saturn's E ring: self-sustained, naturally', Science 264, 550-553.Google Scholar
  19. Heppenheimer, T. A.: 1978, 'On the origin of the Kirkwood gaps and of satellite—satellite resonances', Astron. Astrophys. 70, 457-465.Google Scholar
  20. Hubbard, W. B., Burrows, A. and Lunine, J. I.: 2002, 'Theory of giant planets', Ann. Rev. Astron. Astrophys. 40, 103-136.Google Scholar
  21. Ioannou, P. J. and Lindzen, R. S.: 1993, 'Gravitational tides in the outer planets. II. Interior calculations and estimation of the tidal dissipation factor', Astrophys. J. 406, 266-278.Google Scholar
  22. Kargel, J. S. and Pozio, S.: 1996, 'The volcanic and tectonic history of Enceladus', Icarus 119, 385-404.Google Scholar
  23. Kargel, J. S., Croft, S. K., Lunine, J. I. and Lewis, J. S.: 1991, 'Rheological properties of ammoniawater liquids and crystal-liquid slurries — planetological implications', Icarus 89, 93-112.Google Scholar
  24. Kieffer, S.W., Lopes-Gautier, R., McEwen, A. S., Smythe, W., Keszthelyi, L. and Carlson, R.: 2000, 'Prometheus: Io's wandering plume', Science 288, 1204-1208.Google Scholar
  25. Lee, M. H. and Peale, S. J.: 2000a, 'The puzzle of the Titan-Hyperion 4:3 orbital resonance', Bull. Am. Astron. Soc. 32, 860 (abstract).Google Scholar
  26. Lee, M. H. and Peale, S. J.: 2000b, 'Making Hyperion', Bull. Am. Astron. Soc. 32, 1078 (abstract).Google Scholar
  27. Levison, H. F. and Duncan, M. J.: 1994, 'The long-term dynamical behavior of short period comets', Icarus 108, 18-36.Google Scholar
  28. Lieske, J. H.: 1987, 'Galilean satellite evolution — observational evidence for secular changes in mean motions', Astron. Astrophys 176, 146-158.Google Scholar
  29. Lissauer, J. J. and Cuzzi, J. N.: 1982, 'Resonances in Saturn's rings', Astron. J. 87, 1051-1058.Google Scholar
  30. Lissauer, J. J., Peale, S. J. and Cuzzi, J. N.: 1984, 'Ring torque on Janus and the melting of Enceladus', Icarus 58, 159-168.Google Scholar
  31. Lopes, R.: 2002, 'The rampant volcanos of Io', Planetary Rep. 22, 6-11.Google Scholar
  32. Malhotra, R.: 1991, 'Tidal origin of the Laplace resonance and the resurfacing of Ganymede', Icarus 94, 399-412.Google Scholar
  33. McEwen, A. S.: 2002a, 'Volcanic plumes on Io: old friends and recent surprises', American Geophysical Union Spring Meeting, abstract #P22A-02. www.agu.org/dbasetop.html.Google Scholar
  34. McEwen, A. S.: 2002b, 'Active volcanism on Io', Science 297, 2220-2221.Google Scholar
  35. Morabito, L. A., Synnott, S. P., Kupferman, P. N. and Collins, S. A.: 1979, 'Discovery of currently active extraterrestrial volcanism', Science 204, 972.Google Scholar
  36. Neubauer, F. M.: 1998, 'The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere', J. Geophys. Res. 103, 19843-19866.Google Scholar
  37. Ojakangas, G. W. and Stevenson, D. J.: 1986, 'Episodic volcanism of tidally heated satellites with application to Io', Icarus 66, 341-358.Google Scholar
  38. Pang, K. D., Voge, C. C., Rhoads, J. W. and Ajello, J. M.: 1984, 'The E ring of Saturn and satellite Enceladus', J. Geophys. Res. 89, 9459-9470.Google Scholar
  39. Peale, S. J.: 1988, 'Speculative histories of the Uranian satellite system', Icarus 74, 153-171.Google Scholar
  40. Peale, S. J. and Cassen, P. M.: 1978, 'Contribution of tidal dissipation to lunar thermal history', Icarus 36, 245-269.Google Scholar
  41. Peale, S. J. and Greenberg, R.: 1980, 'On the Q of Jupiter', Lunar Planetary Sci. XI, 871-873.Google Scholar
  42. Peale, S. J. and Lee, M. H.: 2002, 'A primordial origin of the Laplace relation among the Galilean satellites', Science 298, 593-597.Google Scholar
  43. Peale, S. J., Cassen, P. M. and Reynolds, R. T.: 1979, 'Melting of Io by tidal dissipation', Science 203, 892-894.Google Scholar
  44. Reece, C. C., Solomatov, V. S., Baumgardner, J. R. and Wang, W. S.: 1999, 'Stagnant lid convection in a spherical shell', Phys. Earth Planet. Int. 116, 1-7.Google Scholar
  45. Reynolds, R. T. and Cassen, P. M.: 1979, 'On the internal structure of the major satellites of the outer planets', Geophys. Res. Lett. 7, 121-124.Google Scholar
  46. Ross, M. N. and Schubert, G.: 1989, 'Viscoelastic models of tidal heating in Enceladus', Icarus 78, 90-101.Google Scholar
  47. Schubert, G., Spohn, T. and Reynolds, R. T.: 1986, 'Thermal histories, compositions and internal structures of the moons of the solar system'. In: J. A. Burns and M. S. Matthews (eds), Satellites, University of Arizona Press, Tuczon AZ, pp. 224-292.Google Scholar
  48. Segatz, M. T., Spohn, T., Ross, M. N. and Schubert, G.: 1988, 'Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io', Icarus 75, 187-206.Google Scholar
  49. Showalter, M. R., Cuzzi, J. N. and Larson, S. M.: 1991, 'Structure and particle properties of Saturn's E ring', Icarus 94, 451-473.Google Scholar
  50. Showman, A. P. and Malhotra, R.: 1997, 'Tidal evolution into the Laplace resonance and the resurfacing of Ganymede', Icarus 127, 93-111.Google Scholar
  51. Showman, A. P., Stevenson, D. J. and Malhotra, R.: 1997, 'Coupled orbital and thermal evolution of Ganymede', Icarus 129, 367-383.Google Scholar
  52. Sinclair, A. T.: 1975, 'The orbital resonances among the Galilean satellites of Jupiter', Mon. Not. R. Astron. Soc. 171, 59-72.Google Scholar
  53. Smith, B. A., Soderblom, L., Batson, R., Bridges, P. et al.: 1982, 'A new look at the Saturn system — The Voyager 2 images', Science 215, 505-537.Google Scholar
  54. Solomatov, V. S.: 1995, 'Scaling of temperature-and stress-dependent viscosity convection', Phys. Fluids 7, 266-274.Google Scholar
  55. Squyres, S. W., Reynolds, R. T., Cassen, P. M. and Peale, S. J.: 1983, 'The evolution of Enceladus', Icarus 53, 319-331.Google Scholar
  56. Stevenson, D. J.: 1983, 'Anomalous bulk viscosity of two-phase fluids and implications for planetary interiors', J. Geophys. Res. 88, 2445-2455.Google Scholar
  57. Stevenson, D. J.: 2001, 'Jupiter and its moons', Science 294, 71-72.Google Scholar
  58. Stevenson, D. J., Harris, A. W. and Lunine, J. I.: 1986, 'Origins of satellites'. In: J. A. Burns and M. S. Matthews (eds), Satellites, University of Arizona Press, Tucson, AZ, pp. 39-88.Google Scholar
  59. Veeder, G. J., Matson, D. L., Johnson, T. V., Davies, A. G. and Blaney, D. L.: 2002, 'A self consistent thermal emission model for Io', American Geophysical Union Spring Meeting, abstract #P22A-09. www.agu.org/dbasetop.html.Google Scholar
  60. Ward, W. R.: 1997, 'Protoplanet migration by nebula tides', Icarus 126, 261-281.Google Scholar
  61. Weertman, J.: 1973, 'Creep of ice'. In: E. Whalley, S. J. Jones and L. W. Gold (eds), Physics and Chemistry of Ice, Royal Society of Canada.Google Scholar
  62. Wisdom, J. and Holman, M.: 1991, 'Symplectic maps for the n-body problem', Astron. J. 102, 1528-1538.Google Scholar
  63. Yoder, C. F.: 1979, 'How tidal heating in Io drives the Galilean orbital resonance locks', Nature 279, 747-770.Google Scholar
  64. Yoder, C. F.: 1995, 'Astrometric and geodetic properties of Earth and of the solar system'. In: T. J. Ahrens (ed.), Global Earth Physics: A Handbook of Physical Constants, Am. Geophysical Union, Washington, DC, pp. 1-31.Google Scholar
  65. Yoder, C. F. and Peale, S. J.: 1981, 'The tides of Io', Icarus 47, 1-35.Google Scholar
  66. Yoder, D. F., Synnott, S. P. and Salo, H.: 1989, 'Orbits and masses of Saturn's co-orbiting satellites, Janus and Epimetheus', Astron. J. 98, 1875-1889.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • S. J. Peale
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaSanta BarbaraU.S.A., e-mail

Personalised recommendations