, Volume 496, Issue 1–3, pp 355–360 | Cite as

Particle size selection in individuals from epifaunal versus infaunal populations of the nereidid polychaete Neanthes succinea(Polychaeta: Nereididae)

  • Erica V. Pardo
  • Daniel M. Dauer


Neanthes succinea (Frey & Leuckart, 1847) is a common nereidid polychaete of both epifaunal and infaunal estuarine habitats. The gut contents of individuals collected from two epifaunal and two infaunal habitats are compared. Our a priori expectation was that individuals from epifaunal habitats would be classified as macrophagous with guts indicating carnivory and/or macroalgal herbivory, while individuals from infaunal habitats would be classified as microphagous with guts indicating deposit feeding. At all four locations gut contents indicated deposit feeding with little indication of macrophagous feeding. Average particle sizes for mineral grains did not differ between the four collection sites. For the two infaunal locations mean size of the mineral grains in gut contents was significantly smaller than ambient sediments. In addition to mineral grains, guts contained diatoms, dinoflagellates, macrophytic detritus, protozoan tests, and a variety of metazoans. Our study demonstrates that caution is necessary when inferring feeding type from morphology and that population and habitat specific differences in diet can occur within the same species.

Neanthes succinea gut contents particle selection deposit feeding macrophagous microphagous 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bemvenuti, C. E., 1995. A influência da seleção do habitat e do refÚgio na distribuição e abundância de Neanthes succinea (Frey & Leuckart, 1847) (Polychaeta, Nereidae). Iheringia, Sér. Zool. 79: 121–127.Google Scholar
  2. Boesch, D. F., 1977. A new look at the zonation of benthos along the estuarine gradient. In Coull, B. C. (ed.), Ecology of Marine Benthos. University of South Carolina Press, Columbia, South Carolina, U.S.A.: 245–266Google Scholar
  3. Cammen, L. M., 1980. The significance of microbial carbon in the nutrition of the deposit feeding polychaete Nereis succinea. Mar. Biol. 61: 9–20.Google Scholar
  4. Cammen, L. M., 1982. Effects of particle size on organic content and microbial abundance within four marine sediments. Mar. Ecol. Prog. Ser. 9: 273–280.Google Scholar
  5. Dame, R. F., 1996. Ecology of Marine Bivalves: an Ecosystem Approach. CRC Press, Boca Raton, Fla. U.S.A.: 272 pp.Google Scholar
  6. Dauer, D. M., 1973. Polychaete fauna associated with Gulf of Mexico sponges. Florida Sci. 36: 192–195.Google Scholar
  7. Dauer, D. M., 1980. Population dynamics of the polychaetous annelids of an intertidal habitat of Upper Old Tampa Bay. Int. Rev. ges. Hydrobiol. 65: 461–487.Google Scholar
  8. Dauer, D. M., 1993. Biological criteria, environmental health and estuarine macrobenthic community structure. Mar. Poll. Bull. 26: 249–257.Google Scholar
  9. Dauer, D. M., G. H. Tourtellotte & R. M. Ewing, 1982. Oyster shells and artificial worm tubes: the role of refuges in structuring benthic infaunal communities. Int. Rev. ges. Hydrobiol. 67: 661–677.Google Scholar
  10. Dauer, D. M., J. A. Ranasinghe & A. J. Rodi, Jr., 1992. Effects of low dissolved oxygen levels on the macrobenthos of the lower Chesapeake Bay. Estuaries 15: 384–391.Google Scholar
  11. Fauchald, K. & P. A. Jumars, 1979. The diet of worms: a study of the polychaete feeding guilds. Oceanogr. mar. biol. Ann. Rev. 17: 193–284.Google Scholar
  12. Fauvel, P., 1923. Polychaètes errantes. Fauna de France 5: 1–488.Google Scholar
  13. Fong, P. P., 1987. Particle-size utilization in the introduced polychaete Neanthes succinea in San Francisco Bay. Pacific Sci. 41:37–43.Google Scholar
  14. Foster, G. D. & D. A. Wright, 1988. Unsubstituted polynuclear aromatic hydrocarbons in sediments, clams, and clam worms from Chesapeake Bay. Mar. Poll. Bull. 19: 459–465.Google Scholar
  15. Hartman, O., 1968. Atlas of Errantiate Polychaetous Annelids from California. Allan Hancock Foundation. Univ. of Southern California. 828 p.Google Scholar
  16. Hartmann-Schröder, G., 1971. Annelida. Borstenwürmer, Polychaeta. Tierwelt Deutschlands 58: 1–594.Google Scholar
  17. Holland, A. F., N. K. Mountford & J. A. Mihursky, 1977. Temporal variation in upper bay mesohaline benthic communities: 1. The 9-m mud habitat. Chesapeake Sci. 18: 370–378.Google Scholar
  18. Holland, A. F., N. K. Mountford, M. H. Hiegel, K. R. Kaumeyer & J. A. Mihursky, 1980. Influence of predation on infaunal abundance in upper Chesapeake Bay, U.S.A. Mar. Biol. 57: 221–235.Google Scholar
  19. Hughes, T. G., 1979. Studies on the sediment of St. Margarets Bay, Nova Scotia. J. Fish Res. Bd Can. 36: 529–536.Google Scholar
  20. Kristensen, E., 1988. Factors influencing the distribution of nereid polychaetes in danish coastal waters. Ophelia 29: 127–140.Google Scholar
  21. Kuhl, D. L. & L. C. Oglesby, 1979. Reproduction and survival of the pileworm Nereis succinea in higher Salton Sea salinities. Biol. Bull. 157: 153–165.Google Scholar
  22. Lopez, G. R. & J. S. Levinton, 1987. Ecology of deposit-feeding animals in marine sediments. Q. Rev. Biol. 62: 235–260.Google Scholar
  23. Luckenbach, M. W., 1987. Effects of adult infauna on new recruits: implications for the role of biogenic refuges. J. exp. mar. Biol. Ecol. 105: 197–206.Google Scholar
  24. Marsh, A. G. & K. R. Tenore, 1990. The role of nutrition in regulating the population dynamics of opportunistic, surface deposit feeders in a mesohaline community. Limnol. Oceanogr. 35: 710–724.Google Scholar
  25. Miron, G. & E. Kristensen, 1993a. Factors influencing the distribution of nereid polychaetes: the sulfide aspect. Mar. Ecol. Prog. Ser. 93: 143–153.Google Scholar
  26. Miron, G. & E. Kristensen, 1993b. Behavioural response of three nereid polychaetes to injection of sulfide inside burrows. Mar. Ecol. Prog. Ser. 101: 147–155.Google Scholar
  27. Muus, B. J., 1967. The fauna of Danish estuaries and lagoons. Med. Danmarks Fiskeri Havund. 5: 1–316.Google Scholar
  28. Neuhoff, H. G., 1979. Effects of seasonally varying factors on a Nereis succinea population (Polychaeta, Annelida). Mar. Ecol. Prog. Ser. 1: 263–268.Google Scholar
  29. Penry, D. L. & P. A. Jumars, 1990. Gut architecture, digestive constraints and feeding ecology of deposit-feeding and carnivorous polychaetes. Oecologia 82: 1–11.Google Scholar
  30. Pettibone, M. H., 1963. Marine polychaete worms of the New England region 1. Aphroditidae through Trochochaetidae. U.S. Natl. Mus. 227: 1–356.Google Scholar
  31. Pettibone, M. H., 1982. Annelida. In Parker, S. P. (ed.), Synopsis and Classification of Living Organisms. Mc Graw-Hill, Inc. B, New York: 1–43.Google Scholar
  32. Powers, S. P., 1999. Supply-settlement relationships in an estuarine fouling community. Gulf Res. Rep. 10: 79.Google Scholar
  33. Riedel, G. F., J. G. Sanders & R. W. Osman, 1997. Biogeochemical control on the flux of trace elements from estuarine sediments: Water column oxygen concentrations and benthic infauna. Estuar. coast. shelf Sci. 44: 23–38.Google Scholar
  34. Sagasti, A., L. C. Schaffner & J. E. Duffy, 2000. Epifaunal communities thrive in an estuary with hypoxic episodes. Estuaries 23: 474–487.Google Scholar
  35. Taghon, G. L., 1982. Optimal foraging by deposit-feeding invertebrates: roles of particle size and organic coating. Oecologia 2: 295–304.Google Scholar
  36. Tsuchiya, M. & Y. Kurihara, 1979. The feeding and food sources of the deposit-feeding polychaete, Neanthes japonica (Izuka). J. exp. mar. Biol. Ecol. 36: 79–89.Google Scholar
  37. Wang, W. X., I. Stupakoff & N. S. Fisher, 1999. Bioavailability of dissolved and sediment-bound metals to a marine depositfeeding polychaete. Mar. Ecol. Prog. Ser. 178: 281–293.Google Scholar
  38. Whitlach, R. B., 1980. Patterns of resource utilization and coexistence in marine intertidal deposit-feeding communities. J. mar. Res. 38: 743–765.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Erica V. Pardo
    • 1
  • Daniel M. Dauer
    • 2
  1. 1.Departamento de Zoologia Instituto de BiologiaUniversidade Estadual de Campinas CampinasSão PauloBrazil
  2. 2.Department of Biological SciencesOld Dominion UniversityNorfolkU.S.A.

Personalised recommendations