Skip to main content
Log in

Kinetics of Anodic Dissolution of a Hydrophilic Metal: Effect of the Surface Morphology

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Current-voltage curves for the anodic dissolution of iron in acid chloride and sulfate solutions containing Cl, Br, and I ions are calculated. Calculations, made on the basis of a model of spatial separation of dissolution and passivation processes, account for the formation of pairs of kinks on stationary steps. The calculated curves quantitatively coincide with those found in literature. It is shown that portions of “passivity” in the curves are caused by specifically adsorbed anions, which hinder motion of kinks, while regions of “nonpolarizability” are connected not with the desorption of anions but with accelerated formation of vacancies on the steps, generating fresh active dissolution centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heusler, K.E. and Cartledge, G.H., J. Electrochem. Soc., 1961, vol. 108, p. 732.

    Google Scholar 

  2. Kavallaro, L., Felloni, L., Trabanelli, G., and Pulidori, F., Osnovnye voprosy sovremennoi teoreticheskoi elektrokhimii (Basic Problems in Modern Theoretical Electrochemistry), Frumkin, A.N., Ed., Moscow: Mir, 1965, p. 483.

    Google Scholar 

  3. Schwabe, K. and Voigt, C., Electrochim. Acta, 1969, vol. 14, p. 853.

    Google Scholar 

  4. Chin, R.J. and Nobe, K., J. Electrochem. Soc., 1972, vol. 119, p. 1457.

    Google Scholar 

  5. Kuo, H.C. and Nobe, K., J. Electrochem. Soc., 1978, vol. 125, p. 853.

    Google Scholar 

  6. Mogensen, M., Bech-Nielsen, G., and Maahn, E., Electrochim. Acta, 1980, vol. 25, p. 919.

    Google Scholar 

  7. Jesionek, M. and Szklarska-Smialowska, Z., Corros. Sci., 1983, vol. 23, p. 183.

    Google Scholar 

  8. Mikheeva, I.M. and Florianovich, G.M., Zashch. Met., 1987, vol. 23, p. 33.

    Google Scholar 

  9. Dra i, D.M., Dra i, V.J., and Jevti, V., Electrochim. Acta, 1989, vol. 34, p. 1251.

    Google Scholar 

  10. DražIć, D.M., Modern Aspects of Electrochemistry, Conway, B.E., Bockris, J.O'M., and White, R.E., Eds., New York: Plenum, 1989, vol. 19, p. 69.

    Google Scholar 

  11. Lazorenko-Manevich, R.M. and Sokolova, L.A., Elektrokhimiya, 2003, vol. 39, p. 228.

    Google Scholar 

  12. Lazorenko-Manevich, R.M. and Sokolova, L.A., Elektrokhimiya, 1998, vol. 34, p. 933.

    Google Scholar 

  13. Lazorenko-Manevich, R.M. and Sokolova, L.A., Elektrokhimiya, 1998, vol. 34, p. 939.

    Google Scholar 

  14. Lazorenko-Manevich, R.M., Podobaev, A.N., and Sokolova, L.A., Ros. Khim. Zh., 1998, vol. 42, p. 75.

    Google Scholar 

  15. Lazorenko-Manevich, R.M. and Sokolova, L.A., Elektrokhimiya, 1999, vol. 35, p. 1424.

    Google Scholar 

  16. Lazorenko-Manevich, R.M. and Sokolova, L.A., Elektrokhimiya, 2000, vol. 36, p. 1298.

    Google Scholar 

  17. Roiter, V.A., Yuza, V.A., and Poluyan, E.S., Zh. Fiz. Khim., 1939, vol. 13, p. 605.

    Google Scholar 

  18. Novakovskii, V.M., Trusov, G.N., and Fandeeva, M.F., Zashch. Met., 1969, vol. 5, p. 503.

    Google Scholar 

  19. Oshe, A.I. and Lovachev, V.A., Elektrokhimiya, 1970, vol. 6, p. 1419.

    Google Scholar 

  20. Trusov, G.N. and Fandeeva, M.F., Elektrokhimiya, 1972, vol. 8, p. 1008.

    Google Scholar 

  21. Novakovskii, V.M. and Sokolova, L.A., Zashch. Met., 2000, vol. 36, p. 570.

    Google Scholar 

  22. Allgaier, W. and Heusler, K.E., Z. Phys. Chem., N.F., 1975, vol. 98, p. 161.

    Google Scholar 

  23. Allgaier, W. and Heusler, K.E., J. Appl. Electrochem., 1979, vol. 9, p. 155.

    Google Scholar 

  24. Folleher, B. and Heusler, K.E., J. Electroanal. Chem., 1984, vol. 180, p. 77.

    Google Scholar 

  25. Podobaev, A.N., Lazorenko-Manevich, R.M., and Dzhanibakhchieva, L.E., Elektrokhimiya, 1997, vol. 33, p. 1098.

    Google Scholar 

  26. Lazorenko-Manevich, R.M., Sokolova, L.A., and Kolotyrkin, Ya.M., Elektrokhimiya, 1995, vol. 31, p. 235.

    Google Scholar 

  27. Ivanov, E.S., Zashch. Met., 1984, vol. 20, p. 984.

    Google Scholar 

  28. Conway, B.E., Prog. Surf. Sci., 1984, vol. 16, p. 1.

    Google Scholar 

  29. Schmickler, W. and Henderson, D., Prog. Surf. Sci., 1986, vol. 22, p. 323.

    Google Scholar 

  30. Mikhailova, E.I. and Iofa, Z.A., Elektrokhimiya, 1965, vol. 1, p. 107.

    Google Scholar 

  31. Iofa, Z.A. and Vei Bao-min, Zh. Fiz. Khim., 1963, vol. 37, p. 2300.

    Google Scholar 

  32. Heusler, K.E., Osnovnye voprosy sovremennoi teoreticheskoi elektrokhimii (Basic Problems in Modern Theoretical Electrochemistry), Frumkin, A.N., Ed., Moscow: Mir, 1965, p. 453.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazorenko-Manevich, R.M., Sokolova, L.A. Kinetics of Anodic Dissolution of a Hydrophilic Metal: Effect of the Surface Morphology. Russian Journal of Electrochemistry 39, 1104–1110 (2003). https://doi.org/10.1023/A:1026179621950

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026179621950

Navigation