Skip to main content
Log in

Free-electron processes in amorphous semiconductors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Several processes based on the free-electron concept are briefly reviewed in this paper. Using a quantum-tunneling model, a simple theory for determining the effective mass of charge carriers in amorphous semiconductors is presented. It is shown that a charge carrier has different effective masses in the extended and tail states, and that the sign of the effective mass changes as the charge carrier crosses its mobility edge. This is used to explain the anomalous Hall coefficient observed in a-Si : H. The theory is used to calculate Tauc's absorption relation, theoretically. It is found that deviations from the Tauc plot observed in some a-solids may be attributed to the photon-energy-dependent matrix element. Some transport properties of charge carriers are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. F. Mott and E. A. Davis, “Electronic Processes in Non-Crystalline Materials” (Clarendon Press, Oxford, 1979).

    Google Scholar 

  2. R. A. Street, “Hydrogenated Amorphous Silicon” (Cambridge University Press, Cambridge, 1991).

    Google Scholar 

  3. K. Morigaki, “Physics of Amorphous Semiconductors” (World Scientific — Imperial College Press, London, 1999).

    Google Scholar 

  4. J. Singh and K. Shimakawa, “Advances in Amorphous Semiconductors” (Taylor & Francis, London and New York, 2003).

    Google Scholar 

  5. K. Shimakawa, A. Kolobov and S. R. Elliott, Adv. Phys. 44 (1995) 475.

    Google Scholar 

  6. S. Kivelson and C. D. Gelatt Jr., Phys. Rev. B 19 (1979) 5160.

    Google Scholar 

  7. J. Singh, “Excitation Energy Transfer Processes in Condensed Matter” (Plenum, N.Y., 1994).

    Google Scholar 

  8. J. Singh, J. Mater. Sci. 14 (2003) 171.

    Google Scholar 

  9. J. Singh, T. Aoki and K. Shimakawa, Philos. Mag. B 82 (2002) 855.

    Google Scholar 

  10. P. G. Lecomber, D. J. Jones and W. E. Spear, Philos. Mag. 35 (1977) 1173.

    Google Scholar 

  11. L. Friedman, J. Non-Cryst. Solids 6 (1971) 329.

    Google Scholar 

  12. D. Emin, Philos. Mag. 35 (1977) 1189, and in “Proceedings of the Seventh International Conference on Amorphous and Liquid Semiconductors”, edited by W. E. Spear (CICL, Edinburgh, 1977) p. 249.

    Google Scholar 

  13. N. F. Mott, Philos. Mag. B 63 (1991) 3.

    Google Scholar 

  14. H. Okamoto, K. Hattori and Y. Hamakawa, J. Non-Cryst. Solids 164–166 (1993) 445.

    Google Scholar 

  15. W. E. Spear, G. Willeke and P. G. Lecomber, Physica B 117–118 (1983) 909.

    Google Scholar 

  16. G. D. Cody, Semicond. Semimet. 21 (1984) 11.

    Google Scholar 

  17. W. E. Spear, in “Amorphous Silicon and Related Materials”, edited by H. Fritzsche (World Scientific, Singapore, 1988) p. 721.

    Google Scholar 

  18. D. Monroe, Phys. Rev. Lett. 54 (1985) 146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, J. Free-electron processes in amorphous semiconductors. Journal of Materials Science: Materials in Electronics 14, 689–692 (2003). https://doi.org/10.1023/A:1026174903429

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026174903429

Keywords

Navigation