Skip to main content
Log in

Role of Hydrodynamic Conditions in the Distribution of Anodic Dissolution Rates in Cavity Etching Regions during Electrochemical Micromachining of Partially Insulated Surfaces

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Experimental study of the distribution of local rates of electrochemical micromachining in the presence of photoresist masks in various hydrodynamic conditions (macroscopically nonuniform rotating disk electrode, sprayer flow, an electrode placed into a cell with chaotic bulk electrolyte mixing) shows that the maximum etching localization is achieved at the control of the dissolution rate by the mass transport rate (at achieving the anodic limiting current). The localization enhancement as compared to the primary current distribution takes place in the case of a turbulent flow at hydrodynamic conditions where the removal of dissolution products from the undercutting region is hindered. These conditions (electrochemical reaction limited by the ion mass transport rate, high resistance to the mass transport in the undercutting region) are necessary for the localization enhancement using a pulsed anodic–cathodic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Datta, M. and Romankiw, L.T., J. Electrochem. Soc., 1989, vol. 136, p. 285C.

    Google Scholar 

  2. West, A.C., Madore, Ch., Matlosz, M., and Landolt, D., J. Electrochem. Soc., 1992, vol. 139, p. 499.

    Google Scholar 

  3. Kwon, G.-J., Sun, H.-Y., and Sohn, H.-J., J. Electrochem. Soc., 1995, vol. 142, p. 3016.

    Google Scholar 

  4. Shenoy, R.V., Datta, M., and Romankiw, L.T., J. Electrochem. Soc., 1996, vol. 143, p. 2305.

    Google Scholar 

  5. Shenoy, R.V. and Datta, M., J. Electrochem. Soc., 1996, vol. 143, p. 544.

    Google Scholar 

  6. Dikusar, A.I., Keloglu, O.Yu., and Yushchenko, S.P., Elektrokhimiya, 1999, vol. 35, p. 724.

    Google Scholar 

  7. Dikusar, A.I., Keloglu, O.Yu., and Yushchenko, S.P., Elektrokhimiya, 1999, vol. 35, p. 730.

    Google Scholar 

  8. Alkire, R. and Deligianni, H., J. Electrochem. Soc., 1988, vol. 135, p. 1093.

    Google Scholar 

  9. Alkire, R., Deligianni, H., and Ju, J.-B., J. Electrochem. Soc., 1990, vol. 137, p. 818.

    Google Scholar 

  10. Georgiadou, M., Mohr, R., and Alkire, R.C., J. Electrochem. Soc., 2000, vol. 147, p. 3021.

    Google Scholar 

  11. West, A.C. and Newman, J., J. Electrochem. Soc., 1991, vol. 138, p. 1620.

    Google Scholar 

  12. Dinan, T.E., Matlosz, M., and Landolt, D., J. Electrochem. Soc., 1991, vol. 138, p. 2947.

    Google Scholar 

  13. Dikusar, A.I., Mustyatse, A.N., and Yushchenko, S.P., Elektrokhimiya, 1997, vol. 33, p. 163.

    Google Scholar 

  14. Kuo, H.C. and Landolt, D., Electrochim. Acta, 1975, vol. 20, p. 393.

    Google Scholar 

  15. Davydov, A.D., Kabanov, B.N., Kashcheev, V.D., Mirzoev, R.A., and Nenashev, V.A., Fiz. Khim. Obrab. Mater., 1972, no. 4, p. 139.

    Google Scholar 

  16. Filinovskii, V.Yu., Itogi Nauki Tekh., Ser.: Elektrokhim., 1989, vol. 29, p. 3.

    Google Scholar 

  17. Chin, D.-T. and Chandran, R.R., J. Electrochem. Soc., 1981, vol. 128, p. 1904.

    Google Scholar 

  18. Davydov, A.D., Itogi Nauki Tekh., Ser.: Elektrokhim., 1989, vol. 29, p. 38.

    Google Scholar 

  19. Dikusar, A.I., Redkozubova, O.O., Yushchenko, S.P., Kriksunov, L.B., and Kharris, D., Elektron. Obrab. Mater., 2002, no. 5, p. 4.

    Google Scholar 

  20. Bardin, M.B., Dikusar, A.I., and Kishinevskii, M.Kh., Elektrokhimiya, 1970, vol. 6, p. 212.

    Google Scholar 

  21. Grafov, B.M., Martem'yanov, S.A., and Nekrasov, L.N., Turbulentnyi diffuzionnyi sloi v elektrokhimicheskikh sistemakh (The Turbulent Diffusion Layer in Electrochemical Systems), Moscow: Nauka, 1990.

    Google Scholar 

  22. Dikusar, A.I. and Mustyatse, A.N., Elektrokhimiya, 1994, vol. 30, p. 483.

    Google Scholar 

  23. Redkozubova, O.O., Keloglu, O.Yu., Yushchenko, S.P., and Dikusar, A.I., Elektron. Obrab. Mater., 1999, no. 5, p. 4.

    Google Scholar 

  24. Dikusar, A.I., Redcozubova, O.O., Yuschenko, S.P., Kriksunov, L., and Harris, D., Abstracts of Papers, 53 Ann. Meet. of ISE, Düsseldorf, 2002, p. 213.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dikusar, A.I., Redkozubova, O.O., Yushchenko, S.P. et al. Role of Hydrodynamic Conditions in the Distribution of Anodic Dissolution Rates in Cavity Etching Regions during Electrochemical Micromachining of Partially Insulated Surfaces. Russian Journal of Electrochemistry 39, 1073–1077 (2003). https://doi.org/10.1023/A:1026167219224

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026167219224

Navigation