Skip to main content
Log in

Determination of Characteristics of Thin‐Layer Thermoprotective Coatings by Solving Inverse Heat‐ and Mass‐Transfer Problems

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

Measurement data on unsteady temperature fields in decomposing thermoprotective coatings and on mass losses in a high‐temperature inert‐gas (nitrogen) flow are reported. With the use of analytical and numerical methods for solving boundary and coefficient inverse heat‐ and mass‐transfer problems, thermophysical and kinetic characteristics of thermoprotective materials made by two modifications of chlorosulfonated polyethylene and powdered polypropylene filler are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. O. M., Alifanov, Inverse Heat–Transfer Problems [in Russian], Mashinostroenie, Moscow (1988).

    Google Scholar 

  2. G. N. Isakov, A. Ya. Kuzin, “Determination of thermophysical characteristics of porous materials,” in: Heat Transfer and Thermophysical Properties of Porous Materials, Proc. of All–Union Seminar, Institute of Thermal Physics, Novosibirsk (1992), pp. 235–241.

  3. G. N. Isakov, Heat–and Mass–Transfer, and Ignition in Heterogeneous Systems [in Russian], Russian Acad. of Sci., Sib. Div., Novosibirsk (1999).

    Google Scholar 

  4. A. V. Lykov, Theory of Thermal Conductivity [in Russian], Vysshaya Shkola, Moscow (1967).

    Google Scholar 

  5. A. F. Chudnovskii, Thermophysical Characteristics of Dispersed Materials [in Russian], Gos. Izd. Fiz.–Mat. Lit., Moscow (1962).

    Google Scholar 

  6. A. M. Grishin, A. Ya. Kuzin, V. L. Mikov, et al., Solution of Some Inverse Problems in the Mechanics of Reacting Media [in Russian], Izd. Tomsk. Univ., Tomsk (1987).

    Google Scholar 

  7. G. N. Isakov, “Macrokinetics of thermal and thermooxidative destruction of organic–reinforced plastic on heating in a gas flow,” Combust. Expl. Shock Waves, 30, No. 3, 311–315 (1994).

    Google Scholar 

  8. G. N. Isakov, V. V. Nesmelov, et al., “On the theory of relaxation processes in decomposing polymer materials under highly intense convective heating,” Dokl. Akad. Nauk SSSR, 278, No. 5, 1112–1115 (1984).

    Google Scholar 

  9. V. I. Zinchenko, V. V. Nesmelov, A. S. Yakimov, and G. F. Kostin, “Effect of variation of the physicochemical properties of a phenolic carbon plastic on nonstationary heat and mass exchange in high–temperature destruction in a gas flow,” Combust. Expl. Shock Waves, 33, No. 5, 576–582 (1997).

    Google Scholar 

  10. O. F. Shlenskii, A. G. Shashkov, and L. N. Aksenov, Thermophysics of Decomposing Materials [in Russian], Energoatomizdat, Moscow (1985).

    Google Scholar 

  11. O. M. Alifanov, E. A. Artyukhin, and S. V. Rumyantsev, Extremal Methods for Solving Ill–Posed Problems [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  12. N. V. Muzylev, “Uniqueness of simultaneous determination of thermal conductivity and volume heat capacity,” Zh. Vychisl. Mat. Mat. Fiz., 23, No. 1, 102–108 (1983).

    Google Scholar 

  13. M. V. Klibanov, “Uniqueness theorem for one class of coefficient inverse problems,” Inzh.–Fiz. Zh., 49, No. 6. 1006–1009 (1985).

    Google Scholar 

  14. A. M. Grishin and S. P. Sinitsyn, “Theory of the pyrolysis of composite polymer materials,” Combust. Expl. Shock Waves, 20, No. 6, 654–664 (1984).

    Google Scholar 

  15. V. M. Yudin, “Heat and mass transfer in fiberglass plastics,” Inzh.–Fiz. Zh., 24, No. 4, 618–626 (1973).

    Google Scholar 

  16. E. Jahnke, F. Emde, and Lösh, Tafeln Hhërer Funktionen, Teubuer, Stuttgart (1959).

    Google Scholar 

  17. Yu. P. Adler, E. V. Markova, and Yu. V. Granovskii, Experiment Planning for Finding Optimum Conditions [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  18. V. V. Pikalov and N. G. Preobrazhenskii, “Abel transformation in the interferometic holography point explosion,” Combust. Expl. Shock Waves, 10, No. 6, 827–833 (1974).

    Google Scholar 

  19. Yu. E. Voskoboinikov, “Abel equation inversion using cubic splines,” in: Abel Inversion and Its Generalization (collected scientific papers) [in Russian], Inst. Theor. Appl. Mech., Sib. Div., Acad. of Sci. of the USSR, Novosibirsk (1978), pp. 180–189.

    Google Scholar 

  20. V. V. Nesmelov, V. D. Gol'din, V. N. Savel'ev, and V. F. Ermolaev, “Experimental study of special characteristics of TTPS thin–layer thermoprotective coatings in a plasma flow,” in: Rocket and Space Engineering (collected scientific papers) [in Russian], Ser. 12, Issue 2(47), Miass (2001), pp. 3–18.

  21. V. L. Strakhov, S. I. Leonova, and A. M. Garashchenko, “Some results on temperature–dependent thermophysical characteristics of composite polymers,” Inzh.–Fiz. Zh., 33, No. 6, 1047–1051 (1977).

    Google Scholar 

  22. A. A. Samarskii, Theory of Difference Schemes [in Russian], Nauka, Moscow(1983).

    Google Scholar 

  23. Yu. S. Zav'yalov, B. I. Kvasov, and V. L. Miroshnichenko, Spline–Function Methods [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  24. N. B. Vargaftik, Thermophysical Properties of Gases and Liquids: Handbook [in Russian], Nauka, Moscow (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isakov, G.N., Kuzin, A.Y., Savel'ev, V.N. et al. Determination of Characteristics of Thin‐Layer Thermoprotective Coatings by Solving Inverse Heat‐ and Mass‐Transfer Problems. Combustion, Explosion, and Shock Waves 39, 563–573 (2003). https://doi.org/10.1023/A:1026165919610

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026165919610

Navigation