Skip to main content
Log in

Thermophysical Properties of the Refrigerant Mixtures R410A and R407C from Dynamic Light Scattering (DLS)

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Dynamic light scattering (DLS) has been used for the measurement of several thermophysical properties of the refrigerant mixtures R410A and R407C. Thermal diffusivity and sound speed have been obtained by light scattering from bulk fluids for both the liquid and vapor phases under saturation conditions over a temperature range from about 290 K up to the liquid-vapor critical point. By applying the method of DLS to a liquid-vapor interface, also called surface light scattering (SLS), the saturated liquid kinematic viscosity and surface tension can be determined simultaneously. These properties have been measured for R410A and R407C from about 240 to 330 K and 240 to 350 K, respectively. The results are discussed in detail in comparison with literature data and with a simple prediction method based on the mass-weighted properties of the pure components expressed as functions of the reduced temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. A. P. Fröba, S. Will, and A. Leipertz, Int. J. Thermophys. 22:1349(2001).

    Google Scholar 

  2. H. Buchwald, J. Hellmann, H. König, and C. Meurer, SOLKANE Taschenbuch Kälte-und Klimatechnik, Solvay Fluor & Derivate GmbH, ed. (Hannover, 1997).

  3. B. Chu, Laser Light Scattering (Academic Press, New York, 1991).

    Google Scholar 

  4. D. Langevin, Light Scattering by Liquid Surfaces and Complementary Techniques (Marcel Dekker, New York, 1992).

    Google Scholar 

  5. A. Leipertz and A. P. Fröba, in Diffusion in Condensed Matter, J. Kärger, P. Heitjans, and R. Haberlandt, eds. (Springer, Heidelberg), in press.

  6. J. W. Schmidt and M. R. Moldover, J. Chem. Eng. Data 39:39(1994).

    Google Scholar 

  7. J. W. Schmidt, E. Carrillo-Nava, and M. R. Moldover, Fluid Phase Equilib. 122:187(1996).

    Google Scholar 

  8. J. Yata, M. Hori, and T. Minamiyama, Proc. 11th Jap. Symp. Thermophys. Prop. (1990), pp. 111-114.

  9. A. P. Fröba, S. Will, and A. Leipertz, Fluid Phase Equilib. 161:337(1999).

    Google Scholar 

  10. A. P. Fröba and A. Leipertz, Int. J. Thermophys. 24:895(2003).

    Google Scholar 

  11. A. P. Fröba, Dr.-Ing. Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (2002).

  12. K. Kraft and A. Leipertz, Fluid Phase Equilib. 125:245(1996).

    Google Scholar 

  13. K. Kraft and A. Leipertz, Int. J. Thermophys. 15:387(1994).

    Google Scholar 

  14. K. Kraft and A. Leipertz, Proc. Int. Conf. CFCs, The Day After (Padova, 1994), pp. 435-442.

  15. K. Kraft, Dr.-Ing. Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (1995).

  16. R. Tillner-Roth and H. D. Baehr, J. Phys. Chem. Ref. Data 23:657(1994).

    Google Scholar 

  17. S. L. Outcalt and M. O. McLinden, Int. J. Thermophys. 16:79(1995).

    Google Scholar 

  18. R. H. Perry, Chemical Engineers' Handbook (McGraw–Hill, New York, 1973).

    Google Scholar 

  19. Standard Reference Database 14, Version 4, Nat. Inst. Stds. Tech. (NIST), Boulder, Colorado (2000).

  20. SOLKANE Refrigerant Software, Version 2.0, SOLVAY Fluor & Derivate GmbH, Hannover (1999).

  21. N. Hoffmann, K. Spindler, and E. Hahne, in Bestimmung der Transportgrößen von HFKW, Bericht zum AiF-Forschungsvorhaben Nr. 10044B, Heft 2: Wärmeleitfähigkeit, Forschungsrat Kältetechnik e.V., ed. (Frankfurt am Main, 1996).

  22. D. Günther and D. Steimle, in Bestimmung der Transportgrößen von HFKW, Bericht zum AiF-Forschungsvorhaben Nr. 10044B, Heft 3: Spezifische Wärmekapazität, Forschungs-rat Kältetechnik e.V., ed. (Frankfurt am Main, 1996).

  23. A. P. Fröba, S. Will, and A. Leipertz, Int. J. Thermophys. 21:1225(2000).

    Google Scholar 

  24. C. Miqueu, D. Broseta, J. Satherley, B. Mendiboure, J. Lachaise, and A. Graciaa, Fluid Phase Equilib. 172:169(2000).

    Google Scholar 

  25. R. Heide and J. Schenk, in Bestimmung der Transportgrößen von HFKW, Bericht zum AiF-Forschungsvorhaben Nr. 10044B, Heft 1: Viskosität und Oberflächenspannung, Forschungsrat Kältetechnik e.V., ed. (Frankfurt am Main, 1996).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Fröba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fröba, A.P., Leipertz, A. Thermophysical Properties of the Refrigerant Mixtures R410A and R407C from Dynamic Light Scattering (DLS). International Journal of Thermophysics 24, 1185–1206 (2003). https://doi.org/10.1023/A:1026152331710

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026152331710

Navigation