Advertisement

Celestial Mechanics and Dynamical Astronomy

, Volume 87, Issue 1–2, pp 157–169 | Cite as

Tidal Heating and Convection in the Medium Sized Icy Satellites

  • L. Czechowski
  • J. Leliwa-Kopystyński
Article

Abstract

Surface features of some icy satellites indicate that the satellites are modified due to the internally driven tectonic activity. Convection could be one of the processes responsible for the formation of the surface features. The potential sources of energy inside the satellites are discussed. For the medium sized icy satellites the radiogenic and tidal heat sources seem to be of primary importance. To investigate the problem, a 3D model of convection is developed based on the Navier–Stokes equation, the equation of thermal conductivity, the equation of continuity, and the equation of state. The model includes both the tidal and the radiogenic heating. It can be applied to the homogeneous, non-differentiated medium sized satellites. The 3D formulae for tidal heat generation and stress tensor based on the results of Peale and Cassen (1978) and others are applied. A new dimensionless number C t is introduced. It measures the relative importance of tidal and radiogenic heat sources. The systematic investigation of the steady-state convection is performed for different values of the Rayleigh number and for 0≤C t ≤1. The results indicate that the convection pattern for low Rayleigh number driven by tidal heating in the medium sized icy satellites consists of two cells. The pattern of tidally driven convection is oriented, that is, the regions of downward motion are situated at the center of the near- and of the far-side of the satellite.

icy satellites solid-state convection tectonics tidal interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumgardner, J. R.: 1988, 'Application of supercomputers to 3-d mantle convection'. In: S. K. Runcorn (eds.), The Physics of Planets, J Wiley & Sons, pp. 199-231.Google Scholar
  2. Czechowski, L.: 1986, 'Thermal convection'. In: R. Teisseyre (ed.), Continuum Theories in Solid Earth Physics, Elsevier, Amsterdam, pp. 353-398.Google Scholar
  3. Czechowski, L.: 1993a, 'Plate tectonics'. In: R. Teisseyre, L. Czechowski and J. Leliwa-Kopystyński (eds), Dynamics of The Earth's Evolution, Elsevier, Amsterdam, pp. 1-50.Google Scholar
  4. Czechowski, L.: 1993b, 'Theoretical approach to mantle convection'. In: R. Teisseyre, L. Czechowski and J. Leliwa-Kopystyński (eds), Dynamics of The Earth's Evolution, Elsevier, Amsterdam, pp. 161-271.Google Scholar
  5. Czechowski, L. and Leliwa-Kopystyński, J.: 2002, 'Convection driven by tidal heating in medium size icy satellites', J. Geophys. Res. E. (submitted).Google Scholar
  6. Czechowski, L. and Leliwa-Kopystyński, J.: 2002a, 'Solid state convection in the icy satellites: discussion of its possibility', Adv. Space Res. 29(5), 751-756.Google Scholar
  7. Czechowski, L. and Leliwa-Kopystyński, J.: 2002b, 'Solid state convection in the icy satellites: numerical results', Adv. Space Res. 29(5), 757-762.Google Scholar
  8. Deschamps, F. and Sotin, C.: 2001, 'Thermal convection in the outer shell of large icy satellites', J. Geophys. Res. 98, 5107-5121.Google Scholar
  9. Forni, O., Coradini, A. and Federico, C.: 1991, 'Convection and lithospheric strength in Dione, an icy satellite of Saturn', Icarus 94, 232-245.Google Scholar
  10. Jarvis G. T., Glatzmaier, G. A. and Vangelov, V.: 1995, 'Effects of curvature, aspect ratio and plan form in two-and three-dimensional spherical models of thermal convection', Geophys. Astrophys. Fluid Dyn. 79, 147-171.Google Scholar
  11. Johnson, T. V.: 1998, 'Introduction to icy satellite geology'. In: B. Schmitt, C. de Bergh and M. Festou (eds), Solar System Ices, Kluwer Academic Publishers, Dortrecht, pp. 511-523.Google Scholar
  12. Kaula, W. M.: 1964, 'Tidal dissipation by solid friction and the resulting orbital evolution'. Rev. Geophys. 2, 661-685.Google Scholar
  13. Machetel, P. and Rabinowicz, M.: 1986, 'Three-dimensional convection in spherical shells', Geophys. Astrophys. Fluid Dyn. 37, 57-84.Google Scholar
  14. Peale, S. J. and Cassen, P.: 1978, 'Contribution of tidal dissipation to Lunar thermal history', Icarus 36, 245-269.Google Scholar
  15. Peale, S. J., Cassen, P. and Reynolds, R. T.: 1979, 'Melting of Io by tidal dissipation', Science 203, 892-894.Google Scholar
  16. Poirier, J. P., Bloch, L. and Chambon, P.: 1983, 'Tidal dissipation in small viscoelastic ice moons: the case of Enceladus', Icarus 55, 218-230.Google Scholar
  17. Prialnik, D., Bar-Nun, A. and Podolak, M.: 1987, 'Radiogenic heating of comets by Al26 and implications for their time of formation', Astrophys. J. 319, 993-1002.Google Scholar
  18. Reynolds, R. T. and Cassen, P. M.: 1979, 'On the internal structure of the major satellites of the outer planets' Geophys. Res. Lett. 6, 121-124.Google Scholar
  19. Rothery, D. A.: 1992, Satellites of the Outer Planets, Clarendon Press, Oxford.Google Scholar
  20. Schubert, G., Spohn, T. and Reynolds, R. T.: 1986, 'Thermal histories, compositions and internal structures of the moons of the solar system', In: J. A. Burns and M. S. Matthews (eds), Satellites, The University of Arizona Press, Tucson, pp. 224-292.Google Scholar
  21. Segatz, M.: 1988, 'Gezeitenerwämung und Wärmetransport im Jupitermond Io', PhD Thesis, Darmstadt.Google Scholar
  22. Segatz, M., Spohn, T., Ross, M. N. and Schubert, G.: 1988, 'Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io', Icarus 75, 187-206.Google Scholar
  23. Squyres, S. W. and Croft, S. W.: 1986, 'The tectonics of icy satellites'. In: J. A. Burns and M. S. Matthews (eds), Satellites, The University of Arizona Press, Tucson, pp. 293-341.Google Scholar
  24. Stacey, F. D.: 1992, Physics of the Earth, Brookfield Press, Brisbane, Australia.Google Scholar
  25. Tackley, P. J., Schubert, G., Glatzmaier, G. A., Schenk, P., Ratcliff, J. T. and Matas, J.-P.: 2001, 'Three-dimensional simulations of mantle convection in Io', Icarus 149, 79-93.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • L. Czechowski
    • 1
  • J. Leliwa-Kopystyński
    • 1
    • 2
  1. 1.Institute of GeophysicsUniversity of WarsawWarsawPoland e-mail
  2. 2.Space Research Center of Polish Academy of SciencesWarsawPoland, e-mail

Personalised recommendations