Skip to main content
Log in

Clifford Algebra of Spacetime and the Conformal Group

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We demonstrate the emergence of the conformal group SO(4,2) from the Clifford algebra of spacetime. The latter algebra is a manifold, called Clifford space, which is assumed to be the arena in which physics takes place. A Clifford space does not contain only points (events), but also lines, surfaces, volumes, etc., and thus provides a framework for description of extended objects. A subspace of the Clifford space is the space whose metric is invariant with respect to the conformal group SO(4,2) which can be given either passive or active interpretation. As advocated long ago by one of us, active conformal transformations, including dilatations, imply that sizes of physical objects can change as a result of free motion, without the presence of forces. This theory is conceptually and technically very different from Weyl's theory and provides when extended to a curved conformal space a resolution of the long standing problem of realistic masses in Kaluza—Klein theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Ablamowitz, R., Fauser, B., Ryan, and J. Sprosig, W. eds. (2000). Clifford Algebras and Applications in Mathematical Physics, Vols. I, II, Birkhauser, Boston.

    Google Scholar 

  • Aurilia, A., Castro, C., and Pavsic, M. (in preparation). A C-space extension of Maxwell's Electromagnetism.

  • Barut, A. O. and Haugen, R. B. (1972). Annals of Physics 71, 519.

    Google Scholar 

  • Bateman, H. (1910). Proceedings of the London Mathematical Society 8, 223.

    Google Scholar 

  • Castro, C. (1998). The search for the origins of M theory, loop spaces, bulk/boundary duality, hep-th/9809102

  • Castro, C. (2000a). Chaos, Solitons and Fractals 11, 1721. [hep-th/9912113]

    Google Scholar 

  • Castro, C. (2000b). Chaos, Solitons and Fractals 11, 1663. [hep-th/0001134]

    Google Scholar 

  • Castro, C. (2001). Chaos, Solitons and Fractals 12, 1585. [physics/0011040]

    Google Scholar 

  • Castro, C. and Pavšič, M. (2002). Higher derivative gravity and torsion from the geometry of C-spaces. Physics Letters B 539, 133. [arXiv:hep-th/0110079]

    Google Scholar 

  • Cunningham, E. (1909). Proceedings of the London Mathematical Society 8, 77.

    Google Scholar 

  • Fulton, T., Rohrlich, F., and Witten, L. (1962). Reviews of Modern Physics 34, 442.

    Google Scholar 

  • Grillo, A. F. (1973). Revue Nuovo Cimento 3, 146.

    Google Scholar 

  • Hestenes, D. (1996). Space—Time Algebra, Gordon and Breach, New York.

    Google Scholar 

  • Hestenes, D. (1984). Clifford Algebra to Geometric Calculus, D. Reidel, Dordrecht.

    Google Scholar 

  • Kastrup, H. A. (1962). Annalen der Physik (Lpz.) 7, 388.

    Google Scholar 

  • Lasenby, A., Doran, C., and Gull, S. (1993a). Foundations of Physics 23, 1295.

    Google Scholar 

  • Lasenby, A., Doran, C., and Gull, S. (1993b). Journal of Mathematical Physics 34, 3683.

    Google Scholar 

  • Lounesto, P. (2001). Clifford Algebras and Spinors, London Mathematics Series, no. 287, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Mack, G. (1968). Nuclear Physics B 5, 499.

    Google Scholar 

  • Mirman, R. (2001). Quantum Field Theory, Conformal Group Theory, Conformal Field Theory, Nova Science Publisher, Huntington, NY.

    Google Scholar 

  • Niederle, J. and Tolar, J. (1973). Czechoslovak Journal Physics B 23, 871.

    Google Scholar 

  • Pavšič, M. (1977). Nuovo Cimento B 41, 397.

    Google Scholar 

  • Pavšič, M. (1980). Journal of Physics A: Mathematical Society 13, 1367.

    Google Scholar 

  • Pavšič, M. (2001a). The Landscape of Theoretical Physics: A Global View. From Point Particles to the Brane World and Beyond, in Search of a Unifying Principle, Kluwer, Dordrecht, The Netherlands.

    Google Scholar 

  • Pavšič, M. (2001b). Foundations of Physics 31, 1185. [arXiv:hep-th/0011216]

    Google Scholar 

  • Pezzaglia, W. M. Jr. (1993). Classification of Multivector Theories and Modification of the Postulates of Physics, e-Print Archive: gr-qc/9306006.

  • Pezzaglia, W. M. Jr. (1996). Polydimensional Relativity, a Classical Generalization of the Automorphism Invariance Principle, e-Print Archive: gr-qc/9608052.

  • Pezzaglia, W. M. Jr. (1997). Physical Applications of a Generalized Clifford Calculus: Papapetrou Equations and Metamorphic Curvature, e-Print Archive: gr-qc/9710027.

  • Pezzaglia, W. M. Jr. (1999). Dimensionally Democratic Calculus and Principles of Polydimensional Physics, e-Print Archive: gr-qc/9912025.

  • Pezzaglia, W. M. Jr. and Adams, J. J. (1997). Should Metric Signature Matter in Clifford Algebra Formulation of Physical Theories? e-Print Archive: gr-qc/9704048.

  • Pezzaglia, W. M. Jr. and Differ, A. W. (1993). A Clifford Dyadic Superfield from Bilateral Interactions of Geometric Multispin Dirac Theory, e-Print Archive: gr-qc/9311015.

  • Wess, J. (1960). Nuovo Cimento 18, 1086.

    Google Scholar 

  • Weyl, H. (1918). Math. Z. 2, 384.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, C., Pavšič, M. Clifford Algebra of Spacetime and the Conformal Group. International Journal of Theoretical Physics 42, 1693–1705 (2003). https://doi.org/10.1023/A:1026123119587

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026123119587

Navigation