Skip to main content
Log in

Binding of Memantine to Melanin: Influence of Type of Melanin and Characteristics

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The objectives of this study were to characterize sepia, synthetic, and bovine melanin and to determine their binding characteristics to the drug memantine.

Methods. Physical methods were used to characterize sepia, synthetic, and bovine melanin. Their binding properties toward memantine were determined in deionized water and phosphate-buffered saline (PBS) at 37°C. Melanin-memantine binding was measured indirectly by determining the unbound fraction of memantine. Curve fitting according to the Langmuir binding isotherm for one binding site was used for the determination of binding capacity (B Lmax ) and dissociation constant (K D ).

Results. Synthetic and sepia melanin had comparable Gaussian particle size distributions, whereas bovine melanin showed a heterogeneous distribution profile. The suspension medium had a small effect on the particle size distribution of synthetic and bovine melanin. There were characteristic differences in the infrared spectra of the melanins. The rank order for B Lmax in deionized water was sepia > bovine > synthetic melanin. However, when the melanins were suspended in PBS, the B Lmax values were lower, and the rank order was bovine > sepia > synthetic. Whereas the K D values for sepia and synthetic melanin remained largely the same in deionized water and PBS, the K D value for bovine melanin in PBS was more than twice than in deionized water.

Conclusions. This study showed that the physical characteristics of the melanins investigated differ markedly. The binding of memantine to melanin is thought to be determined by the different chemistries of the melanins, particle size, and buffer electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. J. Ings. The melanin binding of drugs and its implications. Drug Metab. Rev. 15:1183-1212 (1984).

    Google Scholar 

  2. G. Prota. Melanins and Melanogenesis. Academic Press, London, 1992.

    Google Scholar 

  3. S. E. Forest and J. D. Simon. Wavelength-dependent photoacoustic calorimetry study of melanin. Photochem. Photobiol. 68:296-298 (1998).

    Google Scholar 

  4. U. Schraermeyer, S. Peters, G. Thumann, N. Kociok, and K. Heimann. Melanin granules of retinal pigment epithelium are connected with the lysosomal degradation pathway. Exp. Eye Res. 68:237-245 (1999).

    Google Scholar 

  5. U. Schraermeyer and K. Heimann. Current understanding on the role of retinal pigment epithelium and its pigmentation. Pigm. Cell Res. 12:219-236 (1999).

    Google Scholar 

  6. T. Sarna. Properties and function of the ocular melanin—a photobiophysical view. J. Photoch. Photobio. B. 12:215-258 (1992).

    Google Scholar 

  7. C. M. R. Clancy and J. D. Simon. Ultrastructural organization of eumelanin from Sepia officinalis measured by atomic force microscopy. Biochemistry-US 40:13353-13360 (2001).

    Google Scholar 

  8. J. B. Nofsinger, S. E. Forest, L. M. Eibest, K. A. Gold, and J. D. Simon. Probing the building blocks of eumelanins using scanning electron microscopy. Pigm. Cell Res. 13:179-184 (2000).

    Google Scholar 

  9. A. Pezzella, M. D'Ischia, A. Napolitano, A. Palumbo, and G. Prota. An integrated approach to the structure of sepia melanin. evidence for a high proportion of degraded 5,6-dihydroxyindole-2-carboxylic acid units in the pigment backbone. Tetrahedron 53:8281-8286 (1997).

    Google Scholar 

  10. L. Novellino, A. Napolitano, and G. Prota. Isolation and characterization of mammalian eumelanins from hair and irides. Biochim. Biophys. Acta 1475:295-306 (2000).

    Google Scholar 

  11. M. Olivieri and R. A. Nicolaus. On the structure of DHI-melanin, Rend. Acc. Sci. Fis. Mat. Vol. LXVI, (1999), http://www.tightrope.it/nicolaus/11b.htm.

  12. M. M. Salazar-Bookaman, I. W. Wainer, and P. N. Patil. Relevance of drug-melanin interactions to ocular pharmacology and toxicology. J. Ocul. Pharmacol. 10:217-239 (1994).

    Google Scholar 

  13. J. M. Gallas, G. W. Zajac, T. Sarna, and P. L. Stotter. Structural differences in unbleached and mildly-bleached synthetic tyrosine-derived melanins identified by scanning probe microscopies. Pigm. Cell Res. 13:99-108 (2000).

    Google Scholar 

  14. G. W. Zajac, J. M. Gallas, J. Cheng, M. Eisner, S. C. Moss, and A. E. Alvarado-Swaisgood. The fundamental unit of synthetic melanin: a verification by tunneling microscopy of X-ray scattering results. Biochim. Biophys. Acta 1199:271-278 (1994).

    Google Scholar 

  15. C. M. R. Clancy, J. B. Nofsinger, R. K. Hanks, and J. D. Simon. A hierarchical self-assembly of eumelanin. J. Phys. Chem. B 104:7871-7873 (2000).

    Google Scholar 

  16. R. D. Schoenwald, V. Tandon, D. E. Wurster, and C. F. Barfknecht. Significance of melanin binding and metabolism in the activity of 5-acetoxyacetylimino-4-methyl-delta(2)-1,3,4,-thiadiazoline-2-sulfonamide. Eur. J. Pharm. Biopharm. 46:39-50 (1998).

    Google Scholar 

  17. S. Kristensen, A. L. Orsteen, S. A. Sande, and H. H. Tonnesen. Photoreactivity of biologically-active compounds VII. interaction of antimalarial-drugs with melanin in-vitro as part of phototoxicity screening. J. Photochem. Photobiol. B. 26:87-95 (1994).

    Google Scholar 

  18. S. Persad, J. D. Wiltshire, I. A. Menon, P. K. Basu, and F. Carre. Role of melanin in drug accumulation in the eye and ocular toxic reaction. J. Invest. Dermatol. 87:432(1986).

    Google Scholar 

  19. B. Leblanc, S. Jezequel, T. Davies, G. Hanton, and C. Taradach. Binding of drugs to eye melanin is not predictive of ocular toxicity. Regul. Toxicol. Pharmacol. 28:124-132 (1998).

    Google Scholar 

  20. A. M. Potts. The reaction of uveal pigment in vitro with polycyclic compounds. Invest. Ophth. Visual 3:405-416 (1964).

    Google Scholar 

  21. P. R. Raghavan, P. A. Zane, and S. L. Tripp. Calculation of drug-melanin binding energy using molecular modeling. Experientia 46:77-80 (1990).

    Google Scholar 

  22. A. H. Lowrey, G. R. Famini, V. P. Loumbev, L. Y. Wilson, and J. M. Tosk. Modeling drug-melanin interaction with theoretical linear solvation energy relationships. Pigm. Cell Res. 10:251-256 (1997).

    Google Scholar 

  23. B. S. Larsson. Interaction between chemicals and melanin. Pigm. Cell Res. 6:127-133 (1993).

    Google Scholar 

  24. I. A. Menon, G. E. Trope, P. K. Basu, D. C. Wakeham, and S. D. Persad. Binding of timolol to iris-ciliary body and melanin: an in vitro model for assessing the kinetics and efficacy of long-acting antiglaucoma drugs. J. Ocul. Pharmacol. 5:313-324 (1989).

    Google Scholar 

  25. B. Larsson and H. Tjälve. Studies on the mechanism of drug-binding to melanin. Biochem. Pharmacol. 28:1181-1187 (1978).

    Google Scholar 

  26. H. S. V. Chen, J. W. Pellegrini, S. K. Aggarwal, S. Z. Lei, S. Warach, F. E. Jensen, and S. A. Lipton. Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine—therapeutic advantage against NMDA receptor-mediated neurotoxicity. J. Neurosci. 12:4427-4436 (1992).

    Google Scholar 

  27. W. A. Lagreze, R. Knorle, M. Bach, and T. J. Feuerstein. Memantine is neuroprotective in a rat model of pressure-induced retinal ischemia. Invest. Ophth. Vis. Sci. 39:1063-1066 (1998).

    Google Scholar 

  28. C. K. Vorwerk, S. A. Lipton, D. Zurakowski, B. T. Hyman, B. A. Sabel, and E. B. Dreyer. Chronic low-dose glutamate is toxic to retinal ganglion cells—toxicity blocked by memantine. Invest. Ophth. Vis. Sci. 37:1618-1624 (1996).

    Google Scholar 

  29. M. J. Koeberle, P. M. Hughes, C. G. Wilson, and G. G. Skellern. Development of a liquid chromatography–mass spectrometric method for measuring the binding of memantine to different melanins. J. Chromatogr. B 787:313-322 (2003).

    Google Scholar 

  30. K. B. Stepien, J. P. Dworzanski, B. Bilinska, M. Porebska-Budny, A. M. Hollek, and T. Wilczok. Catecholamine Melanins. Structural changes induced by copper ions. Biochim. Biophys. Acta 997:49-54 (1989).

    Google Scholar 

  31. L. Bardani, M. G. Bridelli, M. Carbucichio, and P. R. Crippa. Comparative Mössbauer and infrared analysis of iron-containing melanins. Biochim. Biophys. Acta 716:8-15 (1982).

    Google Scholar 

  32. R. A. Nicolaus and M. Piattelli. Structure of melanins and melanogenesis. J. Polym. Sci. 58:1133-1139 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clive G. Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koeberle, M.J., Hughes, P.M., Skellern, G.G. et al. Binding of Memantine to Melanin: Influence of Type of Melanin and Characteristics. Pharm Res 20, 1702–1709 (2003). https://doi.org/10.1023/A:1026116208008

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026116208008

Navigation