Skip to main content
Log in

Host-specific plant signal and G-protein activator, mastoparan, trigger differentiation of zoospores of the phytopathogenic oomycete Aphanomyces cochlioides

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

We found that the gradient of a host-specific attractant, cochliophilin A (5-hydroxy-6,7-methylenedioxyflavone) isolated from the roots of spinach triggered encystment followed by germination of zoospores of Aphanomyces cochlioidesat a concentration less than micromolar order. This compound did not affect the growth and reproduction of this phytopathogen up to 10−6 M concentration in the culture medium. We also observed that mastoparan, an activator of heterotrimeric G-protein could inhibit the motility of zoospores and then strikingly effect encystment followed by 60–80% germination of cysts. Concomitant application of cochliophilin A and mastoparan showed stronger encystment followed by 100% germination of cysts. In addition, we have observed that chemicals interfering with phospholipase C activity (neomycin) and Ca2+ influx/release (EGTA and loperamide) suppress cochliophilin A or mastoparan induced encystment and germination. These results suggest that G-protein mediated signal transduction mechanism may be involved in the differentiation of the A. cochlioides zoospores. This is the first report on the differentiation of oomycete zoospores initiated by a host-specific plant signal or a G-protein activator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer W D and Caetano-Anolles G 1990 Chemotaxis, induced gene expression and competitiveness in the rhizosphere. Plant Soil 129, 45-52.

    Google Scholar 

  • Bircher U and Hohl H R 1997 Environmental signaling during induction of appressorium formation in Phytophthora. Mycol. Res. 101, 395-402.

    Google Scholar 

  • Caterina M J and Devreotes P N 1991 Molecular insights into eukaryotic chemotaxis. FASEB J. 5, 3078-3085.

    PubMed  Google Scholar 

  • Connolly M S, Williams N, Heckman C A and Morris P F 1999 Soybean isoflavones trigger a calcium influx in Phytophthora sojae. Fungal Genet. Biol. 28, 6-11.

    PubMed  Google Scholar 

  • Deacon J W and Donaldson S P 1993 Molecular recognition in the homing responses of zoosporic fungi, with special reference to Pythium and Phytophthora. Mycol. Res. 97, 1153-1157.

    Google Scholar 

  • Deacon J W 1996 Ecological implications of recognition events in the pre-infection stages of root rot pathogens. New Phytol. 133, 135-145.

    Google Scholar 

  • Donaldson S P and Deacon J W 1993 Changes in motility of Pythium zoospores induced by calcium and calcium-modulating drugs. Mycol. Res. 97, 877-883.

    Google Scholar 

  • Fisher R F and Long S R 1992 Rhizobium-plant signal exchange. Nature 357, 655-659.

    PubMed  Google Scholar 

  • Hardham A R 1992 Cell biology of pathogenesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43, 491-526.

    Google Scholar 

  • Higashijima T, Burnier J and Ross E M 1990 Regulation of gqi and goby mastoparan, related amphiphilic peptides, and hydrophobic amines. J. Biol. Chem. 265, 14176-14186.

    PubMed  Google Scholar 

  • Horio T, Kawabata Y, Takayama T, Tahara S, Kawabata J, Fukushi Y, Nishimura H and Mizutani J 1992 A potent attractant of zoospores of Aphanomyces cochlioides isolated from its host, Spinacia oleracea. Experientia 48, 410-414.

    Google Scholar 

  • Horio T, Yoshida K, Kikuchi H, Kawabata J and Mizutani J 1993 A phenolic amide from roots of Chenopodium album. Phytochemistry 33, 807-808.

    Google Scholar 

  • Islam M T, Ito T and Tahara S 2001 Morphological studies on the Aphanomyces cochlioides zoospore and its changes during the interaction with host materials. J. Gen. Plant Pathol. 67, 255-261.

    Google Scholar 

  • Islam M T and Tahara S 2001 Repellent activity of estrogenic compounds toward zoospores of the phytopathogenic fungus Aphanomyces cochlioides. Z. Naturforsch. 56c, 253-261.

    Google Scholar 

  • McDonald L J and Mamrack MD 1995 Phosphoinositide hydrolysis by phospholipase C modulated by multivalent cations La 3+, Al3+, neomycin, polyamines, and melitin. J. Lipid Mediat. Cell Signal. 11, 81-91.

    PubMed  Google Scholar 

  • Mizutani M, Hashidoko Y and Tahara S 1998 Factors responsible for inhibiting the motility of zoospores of the phytopathogenic fungus Aphanomyces cochlioides isolated from the non-host plant Portulaca oleracea. FEBS Lett. 438, 236-240.

    PubMed  Google Scholar 

  • Morris P F, Bone E and Tyler B M 1998 Chemotropic and contact response of Phytophthora sojae hyphae to soybean isoflavonoids and artificial substrates. Plant Physiol. 117, 1171-1178.

    PubMed  Google Scholar 

  • Morris P F and Ward EWB 1992 Chemoattraction of the zoospores of the soybean pathogen, Phytophthora sojae, by isoflavones. Physiol. Mol. Plant Pathol. 40, 17-22.

    Google Scholar 

  • Munnik T, van Himbergen J A J, ter Riet B, Braun F-J, Irvine R F, van den Ende H and Musgrave A 1998 Detailed analysis on the turnover of polyphosphoinositides and phosphatidic acid upon activation of phospholipase C and D in Chlamydomonas cells treated with non-permeabilizing concentration of mastoparan. Planta 207, 133-145.

    Google Scholar 

  • Parent C A and Devreotes P N 1999 A cell's sense of direction. Science 284, 765-770.

    PubMed  Google Scholar 

  • Reid B, Morris B M and Gow N A R 1995 Calcium-dependent genus specific autoaggregation of zoospores of phytopathogenic fungi. Exp. Mycol. 19, 202-213.

    Google Scholar 

  • Ross E M and Higashijima T 1994 Regulation of G-protein activation by mastoparan and other cationic peptides. Methods Enzymol. 237, 26-37.

    PubMed  Google Scholar 

  • Swarthout J T and Walling H W 2000 Lysophosphatidic acid: receptors, signaling and survival. Cell. Mol. Life Sci. 57, 1978-1985.

    PubMed  Google Scholar 

  • Tahara S and Ingham J L 2000 Simple flavones possessing complex biological activity. In Studies in Natural Products Chemistry, Vol 22. Ed. Atta-ur-Rahman. pp. 457-505. Elsevier Science Pub., Amsterdam.

    Google Scholar 

  • Tahara S, Ohkawa K, Takayama T and Ogawa Y 2001 The third naturally-occurring attractant toward zoospores of phyotopathogenic Aphanomyces cochlioides from the host plant Spinacia oleracea. Biosci. Biotechnol. Biochem. 65, 1755-1760.

    PubMed  Google Scholar 

  • Takahashi H, Sasaki T and Ito M 1987 New flavonoids isolated from infected sugar beet roots. Bull. Chem. Soc. Jpn. 60, 2261-2262.

    Google Scholar 

  • Takayama T 1999 Ecochemical Studies on Chemotaxis of Spinach Root Rot Pathogen, Aphanomyces cochlioides Zoospores. Ph.D. Thesis, Grad. Sch. Agric., Hokkaido University, Sapporo, Japan (in Japanese). 27-40 pp.

    Google Scholar 

  • Ui T and Nakamura S 1963 Sugar-beet black root and its pathogen Aphanomyces cochlioides: pathogenicity and host specificity. Tensai-Kenkyukai-Hokoku 3, 78-95 (in Japanese).

    Google Scholar 

  • van Es S and Devreotes P N 1999 Molecular basis of localized responses during chemotaxis in amoeba and leukocytes. Cell. Mol. Life Sci. 55, 1341-1351.

    PubMed  Google Scholar 

  • van Himbergen J A J, ter Riet B, Meijer H J G, van den Ende H Musgrave A and Munnik T 1999 Mastoparan analogues stimulate phospholipase C-and phospholipase D-activity in Chlamydomonas: a comparative study. J. Exp. Bot. 50, 1735-1742.

    Google Scholar 

  • von Broembsen S and Deacon J W 1996 Effects of calcium on germination and further zoospore release from zoospore cysts of Phytophthora parasitica. Mycol. Res. 100, 1498-1504.

    Google Scholar 

  • Warburton A J and Deacon J W 1998 Transmembrane Ca2+ fluxes associated with zoospore encystment and cyst germination by the phytopathogen Phytophthora parasitica. Fungal Genet. Biol. 25, 54-62.

    PubMed  Google Scholar 

  • Xu C and Morris P F 1998 External calcium controls the developmental strategy of Phytophthora sojae cysts. Mycologia 90, 269-275.

    Google Scholar 

  • Yokosawa R and Kuninaga S 1979 Aphanomyces raphani zoospore attractant isolated from cabbage: Indole-3-aldehyde. Ann. Phytopathol. Soc. Jpn. 45, 339-343.

    Google Scholar 

  • Yokosawa R, Kuninaga S and Sekizaki H 1986 Aphanomyces euteiches zoospore attractant isolated from pea root: Prunetin. Ann. Phytopathol. Soc. Jpn. 52, 809-816.

    Google Scholar 

  • Zentmyer G A 1961 Chemotaxis of zoospores for root exudates. Science 133, 1595-1596.

    Google Scholar 

  • Zhang Q, Griffith J M and Grant B R 1992 Role of phosphatidic acid during differentiation of Phytophthora palmivora zoospores. J. Gen. Microbiol. 138, 451-459.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Tahara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, M.T., Ito, T. & Tahara, S. Host-specific plant signal and G-protein activator, mastoparan, trigger differentiation of zoospores of the phytopathogenic oomycete Aphanomyces cochlioides . Plant and Soil 255, 131–142 (2003). https://doi.org/10.1023/A:1026114731718

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026114731718

Navigation