Skip to main content
Log in

Thermal Expansion of Simulated Spent PWR Fuel and Simulated DUPIC Fuel

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Thermal expansions of simulated spent PWR fuel and simulated DUPIC fuel were studied using a dilatometer in the temperature range from 298 to 1900 K. The densities of simulated spent PWR fuel and simulated DUPIC fuel used in the measurement were 10.28 g⋅cm−3 (95.4% of TD) and 10.26 g⋅cm−3 (95.1% of TD), respectively. The linear thermal expansions of the simulated fuels are higher than that of UO2, and the difference between these fuels and UO2 increases progressively with temperature. However, the difference between simulated spent PWR fuel and simulated DUPIC fuel is extremely small, less than the experimental error. For the temperature range from 298 to 1900 K, simulated spent PWR fuel and simulated DUPIC fuel have the same average linear thermal expansion coefficient of 1.39×10−5K−1. As the temperature increases to 1900 K, the relative densities of simulated spent PWR fuel and simulated DUPIC fuel decrease to 93.8% of initial densities at 298 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. I. J. Hastings, P. G. Boczar, C. J. Allan, and M. Gacesa, Proc. Sixth KAIF/KNS Annual Conf., Seoul, Korea (1991).

  2. J. S. Lee, K. C. Song, M. S. Yang, K. S. Chun, B. W. Rhee, J. S. Hong, H. S. Park, and C. S. Rim, Proc. Int. Conf. on Future Nuclear Systems: Emerging Fuel Cycles and Waste Disposal Options Global' 93, Seattle, Washington (1993).

  3. F. Gronvold, J. Inorg. Nucl. Chem. 1:357(1955).

    Google Scholar 

  4. P. J. Baldock, W. E. Spindler, and T. W. Baker, J. Nucl. Mater. 18:305(1966).

    Google Scholar 

  5. A. Albinati, Acta Cryst. A 36:265(1980).

    Google Scholar 

  6. M. T. Hutchings, J. Chem. Soc, Faraday Trans. 2 83:1083(1987).

    Google Scholar 

  7. A. C. Momim, E. B. Mirza, and M. D. Mathews, J. Nucl. Mater. 185:308(1991).

    Google Scholar 

  8. T. Yamashita, N. Nitani, T. Tsuji, and H. Inagaki, J. Nucl. Mater. 245:72(1997).

    Google Scholar 

  9. T. Yamashita, N. Nitani, T. Tsuji, and T. Kato, J. Nucl. Mater. 247:90(1997).

    Google Scholar 

  10. A. K. Tyagi and M. D. Mathews, J. Nucl. Mater. 278:123(2000).

    Google Scholar 

  11. M. Tokar, A. W. Nutt, and T. K. Keenan, Nuclear Tech. 17:147(1973).

    Google Scholar 

  12. R. Lorenzelli and M. El Sayed Ali, J. Nucl. Mater. 68:100(1977).

    Google Scholar 

  13. D. G. Martin, J. Nucl. Mater. 152:94(1988).

    Google Scholar 

  14. K. H. Kang, K. C. Song, J. S. Moon, H. S. Park, and M. S. Yang, Metals and Materials 6:583(2000).

    Google Scholar 

  15. P. G. Lucuta, R. A. Verrall, Hj. Matzke, and B. J. Palmer, J. Nucl. Mater. 178:48(1991).

    Google Scholar 

  16. MATPRO—A Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel Rod Behaviour, TREE-NUREG-1005, EG&G Idaho, Inc., Idaho Falls, Idaho.

  17. J. K. Fink, J. Nucl. Mater. 279:1(2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. H. Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, K.H., Song, K.C. & Yang, M.S. Thermal Expansion of Simulated Spent PWR Fuel and Simulated DUPIC Fuel. International Journal of Thermophysics 24, 1373–1383 (2003). https://doi.org/10.1023/A:1026111420323

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026111420323

Navigation