Skip to main content
Log in

Structural Proteins of the SMC (Structural Maintenance of Chromosomes) Family and Their Role in Chromatin Reorganization

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Structural chromatin proteins of the SMC (Structural Maintenance of Chromosomes) family play an important role in structural DNA reorganization in pro- and eukaryotes. Eukaryotic SMC proteins are the core components of the cohesin and condensin complexes. The cohesin complex is responsible for sister chromatid and homolog cohesion in mitosis and meiosis. The condensin complex uses ATP energy to induce positive coiled-coils in DNA, which results in compaction of the latter and formation of mitotic chromosome scaffold. In addition, the SMC proteins constitute recombination and recombination repair complexes. In hermaphrodites of nematode Caenorhabditis elegans, the SMC protein-containing complex controls dosage compensation and inactivation of the X chromosome genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strunnikov, A.V., Larionov, V.L., and Koshland, D., SMC1: An Essential Yeast Gene Encoding a Putative Head-Rod-Tail Protein Is Required for Nuclear Division and Defines a New Ubiquitous Protein Family, J. Cell Biol., 1993, vol. 123, no. 6, part 2, pp. 1635–1648.

    Google Scholar 

  2. Chuang, P.T., Albertson, D.G., and Meyer, B.J., DPY-27: A Chromosome Condensation Protein Homolog That Regulates Caenorhabditis elegans Dosage Compensation through Association with the X Chromosome, Cell (Cambridge, Mass.), 1994, vol. 79, no. 3, pp. 459–474.

    Google Scholar 

  3. Fousteri, M.I. and Lehmann, A.R., A Novel SMC Protein Complex in Schizosaccharomyces pombe Contains the Rad18 DNA Repair Protein, EMBO J., 2000, vol. 19, no. 7, pp. 1691–1702.

    Google Scholar 

  4. Hirano, T. and Mitchison, T.J., A Heterodimeric Coiled-Coil Protein Required for Mitotic Chromosome Condensation in Vitro, Cell (Cambridge, Mass.), 1994, vol. 79, no. 3, pp. 449–458.

    Google Scholar 

  5. Jessberger, R., Chui, G., Linn, S., and Kemper, B., Analysis of the Mammalian Recombination Protein Complex RC-1, Mutat. Res., 1996, vol. 350, no. 1, pp. 217–227.

    Google Scholar 

  6. Lieb, J.D., Albrecht, M.R., Chuang, P.T., and Meyer, B.J., MIX-1: An Essential Component of the Caenorhabditis elegans Mitotic Machinery Executes X-Chromosome Dosage Compensation, Cell (Cambridge, Mass.), 1998, vol. 92, no. 2, pp. 265–277.

    Google Scholar 

  7. Revenkova, E., Eijpe, M., Heyting, C., et al., Novel Meiosis-Specific Isoform of Mammalian SMC1, Mol. Cell. Biol., 2001, vol. 21, no. 20, pp. 6984–6998.

    Google Scholar 

  8. Saitoh, N., Goldberg, I.G., Wood, E.R., and Earnshaw, W.C., ScII: An Abundant Chromosome Scaffold Protein Is a Member of a Family of Putative ATPases with an Unusual Predicted Tertiary Structure, J. Cell Biol., 1994, vol. 127, no. 2, pp. 303–318.

    Google Scholar 

  9. Saka, Y., Sutani, T., Yamashita, Y., et al., Fission Yeast Cut3 and Cut14, Members of a Ubiquitous Protein Family, Are Required for Chromosome Condensation and Segregation in Mitosis, EMBO J., 1994, vol. 13, no. 20, pp. 4938–4952.

    Google Scholar 

  10. Schmiesing, J.A., Ball, A.R., Jr., Gregson, H.C., et al., Identification of Two Distinct Human SMC Protein Complexes Involved in Mitotic Chromosome Dynamics, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, no. 22, pp. 12 906–12 911.

    Google Scholar 

  11. Steffensen, S., Coelho, P.A., Cobbe, N., et al., A Role for Drosophila SMC4 in the Resolution of Sister Chromatids in Mitosis, Curr. Biol., 2001, vol. 11, no. 5, pp. 295–307.

    Google Scholar 

  12. Strunnikov, A.V., Hogan, E., and Koshland, D., SMC2, a Saccharomyces cerevisiae Gene Essential for Chromosome Segregation and Condensation, Defines a Subgroup within the SMC Family, Genes Dev., 1995, vol. 9, no. 5, pp. 587–599.

    Google Scholar 

  13. Britton, R.A., Lin, D.C., and Grossman, A.D., Characterization of a Prokaryotic SMC Protein Involved in Chromosome Partitioning, Genes Dev., 1998, vol. 12, no. 9, pp. 1254–1259.

    Google Scholar 

  14. Sultana, R., Adler, D.A., Edelhoff, S., et al., The Mouse Sb1.8 Gene Located at the Distal End of the X Chromosome Is Subject to X Inactivation, Hum. Mol. Genet., 1995, vol. 4, no. 2, pp. 257–263.

    Google Scholar 

  15. Holt, C.L. and May, G.S., An Extragenic Suppressor of the Mitosis-Defective bimD6 Mutation of Aspergillus nidulans Codes for a Chromosome Scaffold Protein, Genetics, 1996, vol. 142, no. 3, pp. 777–787.

    Google Scholar 

  16. Hagstrom, K.A., Holmes, V.F., Cozzarelli, N.R., and Meyer, B.J., Caenorhabditis elegans Condensin Promotes Mitotic Chromosome Architecture, Centromere Organization, and Sister Chromatid Segregation during Mitosis and Meiosis, Genes Dev., 2002, vol. 16, no. 6, pp. 729–742.

    Google Scholar 

  17. Harvey, S.H., Krien, M.J., and O'Connell, M.J., Structural Maintenance of Chromosomes (SMC) Proteins, a Family of Conserved ATPases, Genome Biol., 2002, vol. 3, no. 2, pp. 3003.1–3003.5.

    Google Scholar 

  18. Jessberger, R., The Many Functions of SMC Proteins in Chromosome Dynamics, Nat. Rev. Mol. Cell Biol., 2002, vol. 3, no. 10, pp. 767–778.

    Google Scholar 

  19. Hirano, T., The ABCs of SMC Proteins: Two-Armed ATPases for Chromosome Condensation, Cohesion, and Repair, Genes Dev., 2002, vol. 16, no. 4, pp. 399–414.

    Google Scholar 

  20. Nasmyth, K., Disseminating the Genome: Joining, Resolving, and Separating Sister Chromatids during Mitosis and Meiosis, Annu. Rev. Genet., 2001, vol. 35, pp. 673–745.

    Google Scholar 

  21. Graumann, P.L., Losick, R., and Strunnikov, A.V., Subcellular Localization of Bacillus subtilis SMC, a Protein Involved in Chromosome Condensation and Segregation, J. Bacteriol., 1998, vol. 180, no. 21, pp. 5749–5755.

    Google Scholar 

  22. Ghiselli, G., Siracusa, L.D., and Iozzo, R.V., Complete cDNA Cloning, Genomic Organization, Chromosomal Assignment, Functional Characterization of the Promoter, and Expression of the Murine Bamacan Gene, J. Biol. Chem., 1999, vol. 274, no. 24, pp. 17384–17393.

    Google Scholar 

  23. Pavlova, S.V., Nesterova, T.B., and Zakian, S.M., Genes for Structural Proteins of the SMC Family in the Common Vole Microtus arvalis, Mol. Biol. (Moscow), 2001, vol. 35, no. 3, pp. 383–390.

    Google Scholar 

  24. Jones, S. and Sgouros, J., The Cohesin Complex: Sequence Homologies, Interaction Networks and Shared Motifs, Genome Biol., 2001, vol. 2, no. 3, pp. 0009.1–0009.12.

    Google Scholar 

  25. Anderson, D.E., Losada, A., Erickson, H.P., and Hirano, T., Condensin and Cohesin Display Different Arm Conformations with Characteristic Hinge Angles, J. Cell Biol., 2002, vol. 28, p. 28.

    Google Scholar 

  26. Melby, T.E., Ciampaglio, C.N., Briscoe, G., and Erickson, H.P., The Symmetrical Structure of Structural Maintenance of Chromosomes (SMC) and MukB Proteins: Long, Antiparallel Coiled Coils, Folded at a Flexible Hinge, J. Cell Biol., 1998, vol. 142, no. 6, pp. 1595–1604.

    Google Scholar 

  27. Haering, C.H., Lowe, J., Hochwagen, A., and Nasmyth, K., Molecular Architecture of SMC Proteins and the Yeast Cohesin Complex, Mol. Cell, 2002, vol. 9, no. 4, pp. 773–788.

    Google Scholar 

  28. Lowe, J., Cordell, S.C., and van den Ent, F., Crystal Structure of the SMC Head Domain: An ABC ATPase with 900 Residues Antiparallel Coiled-Coil Inserted, J. Mol. Biol., 2001, vol. 306, no. 1, pp. 25–35.

    Google Scholar 

  29. Hirano, M., Anderson, D.E., Erickson, H.P., and Hirano, T., Bimodal Activation of SMC ATPase by Intra-and Intermolecular Interactions, EMBO J., 2001, vol. 20, no. 12, pp. 3238–3250.

    Google Scholar 

  30. Saitoh, N., Goldberg, I., and Earnshaw, W.C., The SMC Proteins and the Coming of Age of the Chromosome Scaffold Hypothesis, BioEssays, 1995, vol. 17, no. 9, pp. 759–766.

    Google Scholar 

  31. Peterson, C.L., The SMC Family: Novel Motor Proteins for Chromosome Condensation?, Cell (Cambridge, Mass.), 1994, vol. 79, no. 3, pp. 389–392.

    Google Scholar 

  32. Hirano, T., Mitchison, T.J., and Swedlow, J.R., The SMC Family: From Chromosome Condensation to Dosage Compensation, Curr. Opin. Cell Biol., 1995, vol. 7, no. 3, pp. 329–336.

    Google Scholar 

  33. Akhmedov, A.T., Frei, C., Tsai-Pflugfelder, M., et al., Structural Maintenance of Chromosomes Protein CTerminal Domains Bind Preferentially to DNA with Secondary Structure, J. Biol. Chem., 1998, vol. 273, no. 37, pp. 24 088–24 094.

    Google Scholar 

  34. Akhmedov, A.T., Gross, B., and Jessberger, R., Mammalian SMC3 C-Terminal and Coiled-Coil Protein Domains Specifically Bind Palindromic DNA, Do Not Block DNA Ends, and Prevent DNA Bending, J. Biol. Chem., 1999, vol. 274, no. 53, pp. 38 216–38 224.

    Google Scholar 

  35. Kimura, K. and Hirano, T., ATP-Dependent Positive Supercoiling of DNA by 13S Condensin: A Biochemical Implication for Chromosome Condensation, Cell (Cambridge, Mass.), 1997, vol. 90, no. 4, pp. 625–634.

    Google Scholar 

  36. Kimura, K. and Hirano, T., Dual Roles of the 11S Regulatory Subcomplex in Condensin Functions, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no. 22, pp. 11 972–11 977.

    Google Scholar 

  37. Losada, A. and Hirano, T., Intermolecular DNA Interactions Stimulated by the Cohesin Complex in Vitro: Implications for Sister Chromatid Cohesion, Curr. Biol., 2001, vol. 11, no. 4, pp. 268–272.

    Google Scholar 

  38. Hirano, M. and Hirano, T., ATP-Dependent Aggregation of Single-Stranded DNA by a Bacterial SMC Homodimer, EMBO J., 1998, vol. 17, no. 23, pp. 7139-7148.

    Google Scholar 

  39. Guacci, V., Koshland, D., and Strunnikov, A., A Direct Link between Sister Chromatid Cohesion and Chromosome Condensation Revealed through the Analysis of MCD1 in Saccharomyces cerevisiae, Cell (Cambridge, Mass.), 1997, vol. 91, no. 1, pp. 47–57.

    Google Scholar 

  40. Michaelis, C., Ciosk, R., and Nasmyth, K., Cohesins: Chromosomal Proteins That Prevent Premature Separation of Sister Chromatids, Cell (Cambridge, Mass.), 1997, vol. 91, no. 1, pp. 35–45.

    Google Scholar 

  41. Losada, A., Hirano, M., and Hirano, T., Identification of Xenopus SMC Protein Complexes Required for Sister Chromatid Cohesion, Genes Dev., 1998, vol. 12, no. 13, pp. 1986–1997.

    Google Scholar 

  42. Hirano, T., Kobayashi, R., and Hirano, M., Condensins, Chromosome Condensation Protein Complexes Containing XCAP-C, XCAP-E and a Xenopus Homolog of the Drosophila Barren Protein, Cell (Cambridge, Mass.), 1997, vol. 89, no. 4, pp. 511–521.

    Google Scholar 

  43. Schmiesing, J.A., Gregson, H.C., Zhou, S., and Yokomori, K., A Human Condensin Complex Containing hCAP-C-hCAP-E and CNAP1, a Homolog of Xenopus XCAP-D2, Colocalizes with Phosphorylated Histone H3 during the Early Stage of Mitotic Chromosome Condensation, Mol. Cell Biol., 2000, vol. 20, no. 18, pp. 6996–7006.

    Google Scholar 

  44. Gregson, H.C., Van Hooser, A.A., Ball, A.R., Jr., et al., Localization of Human SMC1 Protein at Kinetochores, Chromosome Res., 2002, vol. 10, no. 4, pp. 267–277.

    Google Scholar 

  45. Ball, A.R., Jr. and Yokomori, K., The Structural Maintenance of Chromosomes (SMC) Family of Proteins in Mammals, Chromosome Res., 2001, vol. 9, no. 2, pp. 85–96.

    Google Scholar 

  46. Cobbe, N. and Heck, M.M., A Review: SMCs in the World of Chromosome Biology—From Prokaryotes to Higher Eukaryotes, J. Struct. Biol., 2000, vol. 129, nos. 2-3, pp. 123–143.

    Google Scholar 

  47. Hirano, T., SMC Protein Complexes and Higher-Order Chromosome Dynamics, Curr. Opin. Cell Biol., 1998, vol. 10, no. 3, pp. 317–322.

    Google Scholar 

  48. Hirano, T., SMC-Mediated Chromosome Mechanics: A Conserved Scheme from Bacteria to Vertebrates?, Genes Dev., 1999, vol. 13, no. 1, pp. 11–19.

    Google Scholar 

  49. Hirano, T., Chromosome Cohesion, Condensation, and Separation, Annu. Rev. Biochem., 2000, vol. 69, pp. 115–144.

    Google Scholar 

  50. Jessberger, R., Frei, C., and Gasser, S.M., Chromosome Dynamics: The SMC Protein Family, Curr. Opin. Genet. Dev., 1998, vol. 8, no. 2, pp. 254–259.

    Google Scholar 

  51. Nasmyth, K., Peters, J.M., and Uhlmann, F., Splitting the Chromosome: Cutting the Ties That Bind Sister Chromatids, Science, 2000, vol. 288, no. 5470, pp. 1379–1385.

    Google Scholar 

  52. Nasmyth, K., Segregating Sister Genomes: The Molecular Biology of Chromosome Separation, Science, 2002, vol. 297, no. 5581, pp. 559–565.

    Google Scholar 

  53. Strunnikov, A.V., SMC Proteins and Chromosome Structure, Trends Cell Biol., 1998, vol. 8, no. 11, pp. 454–459.

    Google Scholar 

  54. Strunnikov, A.V. and Jessberger, R., Structural Maintenance of Chromosomes (SMC) Proteins: Conserved Molecular Properties for Multiple Biological Functions, Eur. J. Biochem., 1999, vol. 263, no. 1, pp. 6–13.

    Google Scholar 

  55. Taylor, E.M., Moghraby, J.S., Lees, J.H., et al., Characterization of a Novel Human SMC Heterodimer Homologous to the Schizosaccharomyces pombe Rad18/Spr18 Complex, Mol. Biol. Cell, 2001, vol. 12, no. 6, pp. 1583–1594.

    Google Scholar 

  56. Uhlmann, F., Chromosome Condensation: Packaging the Genome, Curr. Biol., 2001, vol. 11, no. 10, pp. R384–R387.

    Google Scholar 

  57. Lee, J.Y. and Orr-Weaver, T.L., The Molecular Basis of Sister-Chromatid Cohesion, Annu. Rev. Cell Dev. Biol., 2001, vol. 17, pp. 753–777.

    Google Scholar 

  58. Donze, D., Adams, C.R., Rine, J., and Kamakaka, R.T., The Boundaries of the Silenced HMR Domain in Saccharomyces cerevisiae, Genes Dev., 1999, vol. 13, no. 6, pp. 698–708.

    Google Scholar 

  59. Losada, A. and Hirano, T., Shaping the Metaphase Chromosome: Coordination of Cohesion and Condensation, BioEssays, 2001, vol. 23, no. 10, pp. 924–935.

    Google Scholar 

  60. Losada, A., Yokochi, T., Kobayashi, R., and Hirano, T., Identification and Characterization of SA/Scc3p Subunits in the Xenopus and Human Cohesin Complexes, J. Cell Biol., 2000, vol. 150, no. 3, pp. 405–416.

    Google Scholar 

  61. Toth, A., Ciosk, R., Uhlmann, F., et al., Yeast Cohesin Complex Requires a Conserved Protein, Eco1p (Ctf7), to Establish Cohesion between Sister Chromatids during DNA Replication, Genes Dev., 1999, vol. 13, no. 3, pp. 320–333.

    Google Scholar 

  62. Tomonaga, T., Nagao, K., Kawasaki, Y., et al., Characterization of Fission Yeast Cohesin: Essential Anaphase Proteolysis of Rad21 Phosphorylated in the S Phase, Genes Dev., 2000, vol. 14, no. 21, pp. 2757–2770.

    Google Scholar 

  63. Sumara, I., Vorlaufer, E., Gieffers, C., et al., Characterization of Vertebrate Cohesin Complexes and Their Regulation in Prophase, J. Cell Biol., 2000, vol. 151, no. 4, pp. 749–762.

    Google Scholar 

  64. Darwiche, N., Freeman, L.A., and Strunnikov, A., Characterization of the Components of the Putative Mammalian Sister Chromatid Cohesion Complex, Gene, 1999, vol. 233, nos. 1-2, pp. 39–47.

    Google Scholar 

  65. Skibbens, R.V., Corson, L.B., Koshland, D., and Hieter, P., Ctf7p Is Essential for Sister Chromatid Cohesion and Links Mitotic Chromosome Structure to the DNA Replication Machinery, Genes Dev., 1999, vol. 13, no. 3, pp. 307–319.

    Google Scholar 

  66. Ivanov, D., Schleiffer, A., Eisenhaber, F., et al., Eco1 Is a Novel Acetyltransferase That Can Acetylate Proteins Involved in Cohesion, Curr. Biol., 2002, vol. 12, no. 4, pp. 323–328.

    Google Scholar 

  67. Tanaka, K., Yonekawa, T., Kawasaki, Y., et al., Fission Yeast Eso1p Is Required for Establishing Sister Chromatid Cohesion during S Phase, Mol. Cell. Biol., 2000, vol. 20, no. 10, pp. 3459–3469.

    Google Scholar 

  68. Wang, Z., Castano, I.B., De Las Penas, A., et al., Pol?: A DNA Polymerase Required for Sister Chromatid Cohesion, Science, 2000, vol. 289, no. 5480, pp. 774–779.

    Google Scholar 

  69. Mayer, M.L., Gygi, S.P., Aebersold, R., and Hieter, P., Identification of RFC (Ctf18p, Ctf8p, Dcc1p): An Alternative RFC Complex Required for Sister Chromatid Cohesion in Saccharomyces cerevisiae, Mol. Cell, 2001, vol. 7, no. 5, pp. 959–970.

    Google Scholar 

  70. Ciosk, R., Shirayama, M., Shevchenko, A., et al., Cohesin's Binding to Chromosomes Depends on a Separate Complex Consisting of Scc2 and Scc4 Proteins, Mol. Cell, 2000, vol. 5, no. 2, pp. 243–254.

    Google Scholar 

  71. Furuya, K., Takahashi, K., and Yanagida, M., Faithful Anaphase Is Ensured by Mis4, a Sister Chromatid Cohesion Molecule Required in S Phase and Not Destroyed in G1 Phase, Genes Dev., 1998, vol. 12, no. 21, pp. 3408–3418.

    Google Scholar 

  72. Hartman, T., Stead, K., Koshland, D., and Guacci, V., Pds5p Is An Essential Chromosomal Protein Required for Both Sister Chromatid Cohesion and Condensation in Saccharomyces cerevisiae, J. Cell Biol., 2000, vol. 151, no. 3, pp. 613–626.

    Google Scholar 

  73. Panizza, S., Tanaka, T., Hochwagen, A., et al., Pds5 Cooperates with Cohesin in Maintaining Sister Chromatid Cohesion, Curr. Biol., 2000, vol. 10, no. 24, pp. 1557–1564.

    Google Scholar 

  74. Tanaka, K., Hao, Z., Kai, M., and Okayama, H., Establishment and Maintenance of Sister Chromatid Cohesion in Fission Yeast by a Unique Mechanism, EMBO J., 2001, vol. 20, no. 20, pp. 5779–5790.

    Google Scholar 

  75. Neuwald, A.F. and Hirano, T., HEAT Repeats Associated with Condensins, Cohesins, and Other Complexes Involved in Chromosome-Related Functions, Genome Res., 2000, vol. 10, no. 10, pp. 1445–1452.

    Google Scholar 

  76. Blat, Y. and Kleckner, N., Cohesins Bind to Preferential Sites along Yeast Chromosome III, with Differential Regulation along Arms versus the Centric Region, Cell (Cambridge, Mass.), 1999, vol. 98, no. 2, pp. 249–259.

    Google Scholar 

  77. Laloraya, S., Guacci, V., and Koshland, D., Chromosomal Addresses of the Cohesin Component Mcd1p, J. Cell Biol., 2000, vol. 151, no. 5, pp. 1047–1056.

    Google Scholar 

  78. Megee, P.C., Mistrot, C., Guacci, V., and Koshland, D., The Centromeric Sister Chromatid Cohesion Site Directs Mcd1p Binding to Adjacent Sequences, Mol. Cell, 1999, vol. 4, no. 3, pp. 445–450.

    Google Scholar 

  79. Sumara, I., Vorlaufer, E., Stukenberg, P.T., et al., The Dissociation of Cohesin from Chromosomes in Prophase Is Regulated by Polo-like Kinase, Mol. Cell, 2002, vol. 9, no. 3, pp. 515–525.

    Google Scholar 

  80. Gregson, H.C., Schmiesing, J.A., Kim, J.S., et al., A Potential Role for Human Cohesin in Mitotic Spindle Aster Assembly, J. Biol. Chem., 2001, vol. 276, no. 50, pp. 47 575–47 582.

    Google Scholar 

  81. Hoque, M.T. and Ishikawa, F., Human Chromatid Cohesin Component hRad21 Is Phosphorylated in M Phase and Associated with Metaphase Centromeres, J. Biol. Chem., 2001, vol. 276, no. 7, pp. 5059–5067.

    Google Scholar 

  82. Warren, W.D., Steffensen, S., Lin, E., et al., The Drosophila RAD21 Cohesin Persists at the Centromere Region in Mitosis, Curr. Biol., 2000, vol. 10, no. 22, pp. 1463–1466.

    Google Scholar 

  83. Sutani, T., Yuasa, T., Tomonaga, T., et al., Fission Yeast Condensin Complex: Essential Roles of Non-SMC Subunits for Condensation and Cdc2 Phosphorylation of Cut3/SMC4, Genes Dev., 1999, vol. 13, no. 17, pp. 2271–2283.

    Google Scholar 

  84. Freeman, L., Aragon-Alcaide, L., and Strunnikov, A., The Condensin Complex Governs Chromosome Condensation and Mitotic Transmission of rDNA, J. Cell Biol., 2000, vol. 149, no. 4, pp. 811–824.

    Google Scholar 

  85. Bhat, M.A., Philp, A.V., Glover, D.M., and Bellen, H.J., Chromatid Segregation at Anaphase Requires the barren Product, a Novel Chromosome-Associated Protein That Interacts with Topoisomerase II, Cell (Cambridge, Mass.), 1996, vol. 87, no. 6, pp. 1103–1114.

    Google Scholar 

  86. Cabello, O.A., Eliseeva, E., He, W.G., et al., Cell Cycle-Dependent Expression and Nucleolar Localization of hCAP-H, Mol. Biol. Cell, 2001, vol. 12, no. 11, pp. 3527–3537.

    Google Scholar 

  87. Yoshimura, S.H., Hizume, K., Murakami, A., et al., Condensin Architecture and Interaction with DNA: Regulatory Non-SMC Subunits Bind to the Head of SMC Heterodimer, Curr. Biol., 2002, vol. 12, no. 6, pp. 508–513.

    Google Scholar 

  88. Kimura, K., Hirano, M., Kobayashi, R., and Hirano, T., Phosphorylation and Activation of 13S Condensin by Cdc2 in Vitro, Science, 1998, vol. 282, no. 5388, pp. 487–490.

    Google Scholar 

  89. Kimura, K., Cuvier, O., and Hirano, T., Chromosome Condensation by a Human Condensin Complex in Xenopus Egg Extracts, J. Biol. Chem., 2001, vol. 276, no. 8, pp. 5417–5420.

    Google Scholar 

  90. Lavoie, B.D., Hogan, E., and Koshland, D., In Vivo Dissection of the Chromosome Condensation Machinery: Reversibility of Condensation Distinguishes Contributions of Condensin and Cohesin, J. Cell Biol., 2002, vol. 156, no. 5, pp. 805–815.

    Google Scholar 

  91. Chu, D.S., Dawes, H.E., Lieb, J.D., et al., A Molecular Link between Gene-Specific and Chromosome-Wide Transcriptional Repression, Genes Dev., 2002, vol. 16, no. 7, pp. 796–805.

    Google Scholar 

  92. Ball, A.R., Jr., Schmiesing, J.A., Zhou, C., et al., Identification of a Chromosome-Targeting Domain in the Human Condensin Subunit CNAP1/hCAP-D2/Eg7, Mol. Cell. Biol., 2002, vol. 22, no. 16, pp. 5769–5781.

    Google Scholar 

  93. Hendzel, M.J., Wei, Y., Mancini, M.A., et al., Mitosis-Specific Phosphorylation of Histone H3 Initiates Primarily within Pericentromeric Heterochromatin during G2 and Spreads in an Ordered Fashion Coincident with Mitotic Chromosome Condensation, Chromosoma, 1997, vol. 106, no. 6, pp. 348–360.

    Google Scholar 

  94. MacCallum, D.E., Losada, A., Kobayashi, R., and Hirano, T., ISWI Remodeling Complexes in Xenopus Egg Extracts: Identification as Major Chromosomal Components That Are Regulated by INCENP-Aurora B, Mol. Biol. Cell, 2002, vol. 13, no. 1, pp. 25–39.

    Google Scholar 

  95. Eide, T., Carlson, C., Tasken, K.A., et al., Distinct but Overlapping Domains of AKAP95 Are Implicated in Chromosome Condensation and Condensin Targeting, EMBO Rep., 2002, vol. 18, p. 18.

    Google Scholar 

  96. Steen, R.L., Cubizolles, F., Le Guellec, K., and Collas, P., A Kinase-Anchoring Protein (AKAP)95 Recruits Human Chromosome-Associated Protein (hCAP)-D2/Eg7 for Chromosome Condensation in Mitotic Extract, J. Cell Biol., 2000, vol. 149, no. 3, pp. 531–536.

    Google Scholar 

  97. Lupo, R., Breiling, A., Bianchi, M.E., and Orlando, V., Drosophila Chromosome Condensation Proteins Topoisomerase II and Barren Colocalize with Polycomb and Maintain Fab-7 PRE Silencing, Mol. Cell, 2001, vol. 7, no. 1, pp. 127–136.

    Google Scholar 

  98. Sutani, T. and Yanagida, M., DNA Renaturation Activity of the SMC Complex Implicated in Chromosome Condensation, Nature, 1997, vol. 388, no. 6644, pp. 798–801.

    Google Scholar 

  99. Bazett-Jones, D.P., Kimura, K., and Hirano, T., Efficient Supercoiling of DNA by a Single Condensin Complex as Revealed by Electron Spectroscopic Imaging, Mol. Cell, 2002, vol. 9, no. 6, pp. 1183–1190.

    Google Scholar 

  100. Kimura, K., Rybenkov, V.V., Crisona, N.J., et al., 13S Condensin Actively Reconfigures DNA by Introducing Global Positive Writhe: Implications for Chromosome Condensation, Cell (Cambridge, Mass.), 1999, vol. 98, no. 2, pp. 239–248.

    Google Scholar 

  101. Uhlmann, F. and Nasmyth, K., Cohesion between Sister Chromatids Must Be Established during DNA Replication, Curr. Biol., 1998, vol. 8, no. 20, pp. 1095–1101.

    Google Scholar 

  102. Hauf, S., Waizenegger, I.C., and Peters, J.M., Cohesin Cleavage by Separase Required for Anaphase and Cytokinesis in Human Cells, Science, 2001, vol. 293, no. 5533, pp. 1320–1323.

    Google Scholar 

  103. Jager, H., Herzig, A., Lehner, C.F., and Heidmann, S., Drosophila Separase Is Required for Sister Chromatid Separation and Binds to PIM and THR, Genes Dev., 2001, vol. 15, no. 19, pp. 2572–2584.

    Google Scholar 

  104. Jallepalli, P.V., Waizenegger, I.C., Bunz, F., et al., Securin Is Required for Chromosomal Stability in Human Cells, Cell (Cambridge, Mass.), 2001, vol. 105, no. 4, pp. 445–457.

    Google Scholar 

  105. Ciosk, R., Zachariae, W., Michaelis, C., et al., An ESP1/PDS1 Complex Regulates Loss of Sister Chromatid Cohesion at the Metaphase to Anaphase Transition in Yeast, Cell (Cambridge, Mass.), 1998, vol. 93, no. 6, pp. 1067–1076.

    Google Scholar 

  106. Waizenegger, I.C., Hauf, S., Meinke, A., and Peters, J.M., Two Distinct Pathways Remove Mammalian Cohesin from Chromosome Arms in Prophase and from Centromeres in Anaphase, Cell (Cambridge, Mass.), 2000, vol. 103, no. 3, pp. 399–410.

    Google Scholar 

  107. Amon, A., Together until Separin Do Us Part, Nat. Cell Biol., 2001, vol. 3, no. 1, pp. E12–E14.

    Google Scholar 

  108. Alexandru, G., Uhlmann, F., Mechtler, K., et al., Phosphorylation of the Cohesin Subunit Scc1 by Polo/Cdc5 Kinase Regulates Sister Chromatid Separation in Yeast, Cell (Cambridge, Mass.), 2001, vol. 105, no. 4, pp. 459–472.

    Google Scholar 

  109. Chuang, P.T., Lieb, J.D., and Meyer, B.J., Sex-Specific Assembly of a Dosage Compensation Complex on the Nematode X Chromosome, Science, 1996, vol. 274, no. 5293, pp. 1736–1739.

    Google Scholar 

  110. Lieb, J.D., Capowski, E.E., Meneely, P., and Meyer, B.J., DPY-26, a Link between Dosage Compensation and Meiotic Chromosome Segregation in the Nematode, Science, 1996, vol. 274, no. 5293, pp. 1732–1736.

    Google Scholar 

  111. Carmi, I. and Meyer, B.J., The Primary Sex Determination Signal of Caenorhabditis elegans, Genetics, 1999, vol. 152, no. 3, pp. 999–1015.

    Google Scholar 

  112. Wood, W.B., Streit, A., and Li, W., Dosage Compensation: X-Repress Yourself, Curr. Biol., 1997, vol. 7, no. 4, pp. 227–230.

    Google Scholar 

  113. Dawes, H.E., Berlin, D.S., Lapidus, D.M., et al., Dosage Compensation Proteins Targeted to X Chromosomes by a Determinant of Hermaphrodite Fate, Science, 1999, vol. 284, no. 5421, pp. 1800–1804.

    Google Scholar 

  114. Kuroda, M.I. and Villeneuve, A.M., Promiscuous Chromosomal Proteins: Complexes about Sex, Science, 1996, vol. 274, no. 5293, pp. 1633–1634.

    Google Scholar 

  115. Klein, F., Mahr, P., Galova, M., et al., A Central Role for Cohesins in Sister Chromatid Cohesion, Formation of Axial Elements, and Recombination during Yeast Meiosis, Cell (Cambridge, Mass.), 1999, vol. 98, no. 1, pp. 91–103.

    Google Scholar 

  116. Watanabe, Y. and Nurse, P., Cohesin Rec8 Is Required for Reductional Chromosome Segregation at Meiosis, Nature,1999, vol. 400, no. 6743, pp. 461–464.

    Google Scholar 

  117. Prieto, I., Suja, J.A., Pezzi, N., et al., Mammalian STAG3 Is a Cohesin Specific to Sister Chromatid Arms in Meiosis I, Nat. Cell Biol., 2001, vol. 3, no. 8, pp. 761–766.

    Google Scholar 

  118. Eijpe, M., Heyting, C., Gross, B., and Jessberger, R., Association of Mammalian SMC1 and SMC3 Proteins with Meiotic Chromosomes and Synaptonemal Complexes, J. Cell Sci., 2000, vol. 113, pp. 673–682.

    Google Scholar 

  119. Jessberger, R., Podust, V., Hubscher, U., and Berg, P., A Mammalian Protein Complex That Repairs Double-Strand Breaks and Deletions by Recombination, J. Biol. Chem., 1993, vol. 268, no. 20, pp. 15 070–15 079.

    Google Scholar 

  120. Stursberg, S., Riwar, B., and Jessberger, R., Cloning and Characterization of Mammalian SMC1 and SMC3 Genes and Proteins, Components of the DNA Recombination Complexes RC-1, Gene, 1999, vol. 228, nos. 1-2, pp. 1–12.

    Google Scholar 

  121. Mengiste, T., Revenkova, E., Bechtold, N., and Paszkowski, J., An SMC-like Protein Is Required for Efficient Homologous Recombination in Arabidopsis, EMBO J., 1999, vol. 18, no. 16, pp. 4505–4512.

    Google Scholar 

  122. Lehmann, A.R., Walicka, M., Griffiths, D.J., et al., The rad18 Gene of Schizosaccharomyces pombe Defines a New Subgroup of the SMC Superfamily Involved in DNA Repair, Mol. Cell. Biol., 1995, vol. 15, no. 12, pp. 7067–7080.

    Google Scholar 

  123. Yonemasu, R., McCready, S.J., Murray, J.M., et al., Characterization of the Alternative Excision Repair Pathway of UV-Damaged DNA in Schizosaccharomyces pombe, Nucleic Acids Res., 1997, vol. 25, no. 8, pp. 1553–1558.

    Google Scholar 

  124. Verkade, H.M., Bugg, S.J., Lindsay, H.D., et al., Rad18 Is Required for DNA Repair and Checkpoint Responses in Fission Yeast, Mol. Biol. Cell, 1999, vol. 10, no. 9, pp. 2905–2918.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlova, S.V., Zakian, S.M. Structural Proteins of the SMC (Structural Maintenance of Chromosomes) Family and Their Role in Chromatin Reorganization. Russian Journal of Genetics 39, 1097–1111 (2003). https://doi.org/10.1023/A:1026110508147

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026110508147

Keywords

Navigation