Skip to main content
Log in

Kinetics and Mechanism of the Cationic Polymerization of Trioxane. III. Copolymerization with Cyclic Formals

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Kinetics and mechanism of three cationic copolymerization systems of trioxane (TO) and 1,3-dioxolane (DO) and/or 1,3,5-trioxepane (TOP) including TO/DO 2.0/0.1, TO/DO/TOP 2.0/0.1/0.055, and TO/TOP 2.0/0.1 in a unit of mol/L in 1,2-ethylene dichloride at 30 °C were investigated via evaluations of yields of copolymers and conversions of monomer and comonomer(s) using a gravimetric method and gas chromatography, respectively. The reactivity of DO or TOP was higher than that of TO toward the copolymerizations. Two byproducts, namely, TOP (or DO) and tetroxocane (TOC), were formed during the copolymerization of TO and DO (or TOP). The equilibrium concentrations of TO, DO, TOP, and TOC were ca 0.40, 0.02, 0.02, and 0.02 mol/L, respectively, for the TO/DO and TO/TOP systems whereas relatively high equilibrium concentrations of DO and TOP at ca 0.035 mol/L were for the TO/DO/TOP system. As compared with TO homopolymer, the thermal stability of the copolymers was increased with increasing conversion. The finding that the TO/DO/TOP system having a relatively high amount of cyclic formals consumed in the copolymerization exhibited a relatively low thermal stability suggested that the transacetalization reactions proceeded mainly via oxocarbenium species other than cyclic oxonium species, as compared with the TO/DO and TO/TOP systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Weissermel, E. Fischer, K. Gutweiler, H. D. Hermann and H. Cherdron, Angew. Chem. Internat. Ed., 6, 526 (1967).

    Google Scholar 

  2. Y. T. Shieh and S. A. Chen, J. Polym. Sci. Part A: Polym. Chem., 37, 483 (1999).

    Google Scholar 

  3. A. A. Berlin and N. S. Yenikolopyan, Vysokomol. Soyed., A11(12), 2671 (1969).

    Google Scholar 

  4. A. A. Berlin, I. P. Kravchuk, G. V. Rakova, B. A. Rosenberg and N. S. Yenikolopyan, Vysokomol. Soyed., A15(3), 554 (1973).

    Google Scholar 

  5. S. Okamura, T. Higashimura and T. Miki, Progress in Polym. Sci. Japan, 3, 97 (1972).

    Google Scholar 

  6. M. Okada, Y. Yamashita and Y. Ishii, Die. Makromolekulare Chemie, 80, 196 (1964).

    Google Scholar 

  7. P. H. Plesch and P. H. Westermann, J. Polym. Sci., Part C, 16, 3837 (1968).

    Google Scholar 

  8. Y. Yamashita, M. Okada and H. Kasahara, Die Makromolekulare Chemie, 117, 256 (1968).

    Google Scholar 

  9. R. Szymanski, P. Kubisa and S. Penczek, Macromolecules, 16, 1000 (1983).

    Google Scholar 

  10. F. M. Berardinelli, T. J. Dolce and C. Walling, J. Appl. Polym. Sci., 9, 1419 (1965).

    Google Scholar 

  11. Y. Yamashita, T. Asakura, M. Okada and K. Ito, DieMakromolekulare Chemie, 129, 1 (1969).

    Google Scholar 

  12. S. Penczek, J. Fejgin, W. Sadowska and M. Tomaszewicz, Die Makromolekulare Chemie, 116, 203 (1968).

    Google Scholar 

  13. M. Gibas and Z. Jedlinski, Macromolecules, 14, 1012 (1981).

    Google Scholar 

  14. G. L. Collins, R. K. Greene, F. M. Berardinelli and W. H. Ray, J. Polym. Sci., Polym. Chem. Ed., 19, 1597 (1981).

    Google Scholar 

  15. C. S. H. Chen, J. Polym. Sci., Polym. Chem. Ed., 13, 1183 (1975).

    Google Scholar 

  16. C. S. H. Chen, J. Polym. Sci., Polym. Chem. Ed., 14, 143 (1976).

    Google Scholar 

  17. C. S. H. Chen and F. Wenger, J. Polym. Sci., Part A-1, 9, 33 (1971).

    Google Scholar 

  18. M. Dimonie, N. V. Bac, G. Dragan and I. Neguluscu, J. Macromol. Sci.-Chem., A18(4), 629 (1982).

    Google Scholar 

  19. G. Dragan, M. Dimonie, N. V. Bac and I. Neguluscu, J. Macromol. Sci.-Chem., A18(4), 651 (1982).

    Google Scholar 

  20. T. Miki, T. Higashimura and S. Okamura, J. Polym. Sci. A-1, 5, 95 (1967).

    Google Scholar 

  21. K. Weissermel, E. Fischer, K. Gutweiler, and H. D. Hermann, Kunststoffe, 54(7), 410 (1964).

    Google Scholar 

  22. C. A. Wamser, J. Am. Chem. Soc., 73, 409 (1951).

    Google Scholar 

  23. G. L. Collins, R. K. Greene, F. M. Berardinelli and W. V. Garruto, J. Polym. Sci., Polym. Lett., 17, 667 (1979).

    Google Scholar 

  24. Y. Yamashita, T. Tsuda, M. Okada and S. Iwatsuki, J. Polym. Sci., Part A-1, 4, 2121 (1966).

    Google Scholar 

  25. R. J. Withey and E. Whalley, Trans. Faraday Soc., 59, 901 (1963).

    Google Scholar 

  26. H. R. Allcock, Heteroatom Ring Systems and Polymers. Academic, New York, 1967, p. 94.

    Google Scholar 

  27. N. S. Enikolopyan, V. J. Irzhak, I. P. Kravchuk, O. A. Plechova, G. V. Rakova, L. M. Romanov and G. P. Savushkina, J. Polym. Sci., Part C, 16, 2453 (1967).

    Google Scholar 

  28. Y. T. Shieh, M. J. Yeh and S. A. Chen, J. Polym. Sci., Part A: Polym. Chem. 37, 4198 (1999).

    Google Scholar 

  29. G. A. Vorob'ena, G. M. Trofimova, A. A. Berlin and N. S. Yenikolopyan, Vysokomol. Soyed., A16(7), 1493 (1974).

    Google Scholar 

  30. H. Cherdron, J. Macromol. Sci.-Chem., A6(6), 1077 (1972).

    Google Scholar 

  31. S. Penczek, Die Makromolekulare Chemie, 175, 1217 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shieh, YT., Lay, ML. & Chen, SA. Kinetics and Mechanism of the Cationic Polymerization of Trioxane. III. Copolymerization with Cyclic Formals. Journal of Polymer Research 10, 151–160 (2003). https://doi.org/10.1023/A:1026097215009

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026097215009

Navigation