Skip to main content
Log in

The Effect of Sodium Malonate on Yeast Thermotolerance

  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The study of the effect of malonate (an inhibitor of the succinate dehydrogenase complex of the respiratory chain of mitochondria) on the thermotolerance of the fermentative Saccharomyces cerevisiae and nonfermentative Rhodotorula rubra yeasts showed that malonate augmented the damaging effect of heat shock on the yeasts utilizing glucose (or other sugars) by means of oxidative phosphorylation. At the same time, malonate did not influence, and sometimes even improved, the thermotolerance of the yeasts utilizing glucose through fermentation. The suggestion is made that cell tolerance to heat shock depends on the normal functioning of mitochondria. On the other hand, their increased activity at elevated temperatures may accelerate the formation of cytotoxic reactive oxygen species and, hence, is not beneficial to cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kappeli, O., Regulation of Carbon Metabolism in Saccharomyces cerevisiae and Related Yeasts, Adv. Microb. Physiol., 1986, vol. 28, pp. 181-209.

    Google Scholar 

  2. De Deken, R.H., The Crabtree Effect: A Regulatory System in Yeast, J. Gen. Microbiol., 1966, vol. 44,no. 2, pp. 149-156.

    Google Scholar 

  3. Kreger van Rij, N.J.W., Debaryomyces Lodder et Kreger-van Rij nom. conserv., The Yeast: A Taxonomic Study, Lodder, J., Ed., Amsterdam: North-Holland Publ., 1970, pp. 129-156.

    Google Scholar 

  4. Phaff, H.J. and Ahearn, D.G., Rhodotorula Harrison, The Yeast: A Taxonomic Study, Lodder, J., Ed., Amsterdam: North-Holland Publ., 1970, pp. 1187-1223.

    Google Scholar 

  5. Rikhvanov, E.G., Varakina, N.N., Rusaleva, T.M., Rachenko, E.I., and Voinikov, V.K., The Effect of the Cytochrome Oxidase Inhibitors on the Thermotolerance of Yeasts, Mikrobiologiya, 2003, vol. 72,no. 2, pp. 174-179.

    Google Scholar 

  6. Rikhvanov, E.G., Varakina, N.N., Rusaleva, T.M., Rachenko, E.I., and Voinikov, V.K., The Effect of Sodium Azide on the Thermotolerance of the Yeasts Saccharomyces cerevisiae and Candida albicans, Mikrobiologiya, 2002, vol. 71,no. 6, pp. 768-772.

    Google Scholar 

  7. Davidson, J.F., Whyte, B., Bissinger, P.H., and Schiestl, R.H., Oxidative Stress Is Involved in Heat-Induced Cell Death in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, 1996, vol. 93,no. 10, pp. 5116-5121.

    Google Scholar 

  8. Sugiyama, K., Izawa, S., and Inoue, Y., The Yap1p-Dependent Induction of Glutathione Synthesis in Heat Shock Response of Saccharomyces cerevisiae, J. Biol. Chem., 2000, vol. 275,no. 20, pp. 15535-15540.

    Google Scholar 

  9. Slater, E.C., Application of Inhibitors and Uncouplers for a Study of Oxidative Phosphorylation, Methods Enzymol., 1967, vol. 10, pp. 48-57.

    Google Scholar 

  10. Joseph-Horne, T., Hollomon, D.W., and Wood, P.M., Fungal Respiration: A Fusion of Standard and Alternative Components, Biochim. Biophys. Acta, 2001, vol. 1504,no. 2/3, pp. 179-195.

    Google Scholar 

  11. Parsell, D.A. and Lindquist, S., The Function of Heat-Shock Proteins in Stress Tolerance: Degradation and Reactivation of Damaged Proteins, Annu. Rev. Genet., 1993, vol. 27, pp. 437-496.

    Google Scholar 

  12. Nguyen, V.T. and Bensaude, O., Increased Thermal Aggregation of Proteins in ATP-depleted Mammalian Cells, Eur. J. Biochem., 1994, vol. 220,no. 1, pp. 239-246.

    Google Scholar 

  13. Mitchel, R.E. and Morrison, D.P., Assessment of the Role of Oxygen and Mitochondria in Heat Shock Induction of Radiation and Thermal Resistance in Saccharomyces cerevisiae, Radiat. Res., 1983, vol. 96,no. 1, pp. 113-117.

    Google Scholar 

  14. Weitzel, G., Pilatus, U., and Rensing, L., The Cytoplasmic pH, ATP Content, and Total Protein Synthesis Rate during Heat-Shock Protein Inducing Treatments in Yeast, Exp. Cell Res., 1987, vol. 170,no. 1, pp. 64-79.

    Google Scholar 

  15. Pozmogova, I.N., The Effect of Submaximal Temperatures on Thermotolerant Yeasts, Mikrobiologiya, 1976, vol. 45, pp. 97-99.

    Google Scholar 

  16. Patriarca, E.J. and Maresca, B., Acquired Thermotolerance Following Heat Shock Protein Synthesis Prevents Impairment of Mitochondrial ATPase Activity at Elevated Temperatures in Saccharomyces cerevisiae, Exp. Cell Res., 1990, vol. 190,no. 1, pp. 57-64.

    Google Scholar 

  17. Rikhvanov, E.G., Varakina, N.N., Rusaleva, T.M., Rachenko, E.I., Kiseleva, V.A., and Voinikov, V.K., Heat Shock-induced Changes in the Respiration of the Yeast Saccharomyces cerevisiae, Mikrobiologiya, 2001, vol. 70,no. 4, pp. 531-535.

    Google Scholar 

  18. Korshunov, S.S., Skulachev, V.P., and Starkov, A.A., High Protonic Potential Actuates a Mechanism of Production of Reactive Oxygen Species in Mitochondria, FEBS Lett., 1997, vol. 416,no. 1, pp. 15-18.

    Google Scholar 

  19. van Uden, N., Temperature Profiles of Yeasts, Adv. Microb. Physiol., 1984, vol. 25, pp. 195-251.

    Google Scholar 

  20. Schenberg-Frascino, A. and Moustacchi, E., Lethal and Mutagenic Effects of Elevated Temperature on Haploid Yeast: I. Variations in Sensitivity during the Cell Cycle, Mol. Gen. Genet., 1972, vol. 115,no. 3, pp. 243-257.

    Google Scholar 

  21. Hanninen, A.-L., Simola, M., Saris, N., and Makarow, M., The Cytoplasmic Chaperone Hsp104 Is Required for Conformational Repair of Heat-denatured Proteins in the Yeast Endoplasmic Reticulum, Mol. Cell. Biol., 1999, vol. 10,no. 11, pp. 3623-3632.

    Google Scholar 

  22. Sozinov, D.Yu., Rikhvanov, E.G., Varakina, N.N., Rachenko, E.I., and Voinikov, V.K., The Effect of the Postshock Temperature on the Survival of Debaryomyces vanriji, Fiziol. Rast. (Moscow), 1999, vol. 46,no. 2, pp. 276-281.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rikhvanov, E.G., Varakina, N.N., Rusaleva, T.M. et al. The Effect of Sodium Malonate on Yeast Thermotolerance. Microbiology 72, 548–552 (2003). https://doi.org/10.1023/A:1026087015570

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026087015570

Navigation