Skip to main content
Log in

The Effect of Crystallographic Orientation on the Oxidation Behavior of a Single-Crystal Nickel-Base Superalloy

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation kinetics of DD100 nickel-base single-crystal alloy, with (221) and (100) surface orientations were tested in this study by thermogravimetry. A pronounced anisotropy in both the cyclic and isothermal oxidation resistance of DD100 alloy was observed. The (221) crystallographic surface of DD100 had a slower oxidation rate than the (100) surface when isothermally exposed to stationary air at 950°C, whereas the opposite results were obtained at 1050°C. When cyclically oxidized at 1100°C, the weight loss of samples with (221) surfaces was significantly greater than that of (100) surfaces, so that the cyclic-oxidation anisotropy was more remarkable at 1100°C than at 950°C. The different spatial alignment of the γ′/γ interface is thought to be responsible for the anisotropic oxidation behavior of the nickel-base single crystal alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Ford, K. P. L. Fullagar, H. K. Bhangu, M. C. Thomas, P. S. Burkholder, P. S. Korinko, K. Harris, and J. B. Wahl, J. Eng. Gas Turb. Power, Trans. ASME 121, 138(1999).

    Google Scholar 

  2. C. Schutze and M. Feller-Kniepmeier, Scr. Mater. 44, 731(2001).

    Google Scholar 

  3. O. Takehiro and W. Rikizo, J. Iron and Steel Inst. Japan 77, 832(1991) (in Japanese).

    Google Scholar 

  4. J. L. Smialek and B. A. Pint, Mater. Sci. Forum 369, 459(2001).

    Google Scholar 

  5. J. L. Smialek, J. Eng. Gas Turb. Power, Trans. ASME 120, 370(1998).

    Google Scholar 

  6. Z. L. Gui, Aviation Product Engineering, 11, 20(1997) (in Chinese).

    Google Scholar 

  7. T. P. Gabb, J. Gayda, and R. V. Miner, Metall. Trans. 17A, 497(1986).

    Google Scholar 

  8. M. B. Henderson and J. W. Martin, Acta Mater. 44, 111(1996).

    Google Scholar 

  9. A. A. Hopgood, and J. W. Martin, Mater. Sci. Eng. 82, 27(1986).

    Google Scholar 

  10. V. Sass, V. Glatzel, and M. Feller-Kniepmeier, Acta Mater. 44, 1967(1996).

    Google Scholar 

  11. N. N. Khoi, W. W. Smeltzer, and J. D. Embury, J. Electrochem. Soc. 122, 1495(1975).

    Google Scholar 

  12. J. Doychak, J. L. Smialek, and T. E. Mitchell, Metall. Trans. A, 20A, 499(1989).

    Google Scholar 

  13. Per Kofstad, High Temperature Corrosion (Elsevier Applied Science, London and New York, 1988) p. 132.

    Google Scholar 

  14. C. J. Ye, Doctoral Dissertation, (Institute of Corrosion and Protection of Metals, Chinese Academy of Sciences, Shenyang, 1994) p. 24(in Chinese).

    Google Scholar 

  15. M. Goebel, A. Rahmel, and M. Schutze, Oxid. Met. 41, 271(1994).

    Google Scholar 

  16. M. Goebel, A. Rahmel, and M. Schutze, Oxid. Met. 39, 231(1993).

    Google Scholar 

  17. M. A. Smith, W. E. Frazier, and B. A. Pregger, Mater. Sci. Eng. A A203, 388(1995).

    Google Scholar 

  18. M. Levy, P. Farrell, and F. Pettit, Corrosion 42, 708(1986).

    Google Scholar 

  19. M. Levy, R. Huie, and F. Pettit, Corrosion 45, 661(1989).

    Google Scholar 

  20. B. Pieraggi and F. Dabosi, Werst. Korros. 38, 584(1987).

    Google Scholar 

  21. F. W. Young, J. V. Cathcart, and A. T. Gwathmey, Acta Metall. 4, 145(1956).

    Google Scholar 

  22. R. F. Mehl and E. L. McCandless, Trans. AIME 125, 531(1937).

    Google Scholar 

  23. J. V. Cathcart, G. F. Petersen, and C. J. Sparks, Jr., J. Electrochem. Soc., 116, 664(1969).

    Google Scholar 

  24. B. S. Borie, C. J. Sparks, Jr., and J. V. Cathcart, Acta Metall. 10, 691(1962).

    Google Scholar 

  25. J. V. Cathcart, J. E. Epperson, and G. F. Petersen, Acta Metall. 10, 699(1962).

    Google Scholar 

  26. J. V. Cathcart and G. F. Petersen, J. Electrochem. Soc. 115, 595(1968).

    Google Scholar 

  27. R. Fullman, J. Appl. Phys. 22, 456(1951).

    Google Scholar 

  28. J. M. Perrow, W. W. Smeltzer, and J. D. Embury, Acta Metall. 16, 1209(1968).

    Google Scholar 

  29. R. Herchl, N. N. Khoi, T. Homma, and W. W. Smeltzer, Oxid. Met. 4, 35(1972).

    Google Scholar 

  30. J. V. Cathcart, in High-Temperature Ordered Intermetallic Alloys, C. C. Koch, C. T. Liu, and N. S. Stoloff ed. (MRS, Symp. Proc. Pittsburgh, Pennsylvania,), 39, 45(1985).

    Google Scholar 

  31. A. D. LeClaire, in Smithells Metals Reference Book, E. A. Brandes, eds. (Butterworth, London, 1983) p. 13–1.

    Google Scholar 

  32. Y. L. Guo, in Physical Properties and Testing Methods of Metals, Manual of Physical Properties of Metal Materials. The Nonferrous Metals Society of China, The Chinese Society for Metals Ed. (The Chinese Metallurgical Industrial Press, Beijing, 1987), p. 192.

    Google Scholar 

  33. C. A. Barrett, R. V. Miner, and D. R. Hull, Oxid. Met. 20, 255(1983).

    Google Scholar 

  34. U. Krupp and H.-J. Christ, Metall. Mater. Trans. A 31A, 47(2002).

    Google Scholar 

  35. J. X. Dong, K. Sawada, K. Yokokawa, and F. Abe, Scr. Mater. 44, 2641(2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, F., Han, E., Jo, C. et al. The Effect of Crystallographic Orientation on the Oxidation Behavior of a Single-Crystal Nickel-Base Superalloy. Oxidation of Metals 60, 211–224 (2003). https://doi.org/10.1023/A:1026077417712

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026077417712

Navigation