Skip to main content
Log in

Ecological and ecophysiological patterns in a pre-altiplano shrubland of the Andean Cordillera in northern Chile

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

We report on community structural, ecophysiological, phenological, and morphological measurements made on woody plant species in the high elevation pre-altiplano zone on the western slopes of the Andean Cordillera of northern Chile. Notwithstanding extreme conditions of low rainfall, high atmospheric vapour demand and diurnal temperature fluctuation, a diversity of habitats (associated with drainage and slope aspect), appreciable local plant species richness (28 woody perennial plant species in a small area), and an array of adaptive morphological ecophysiological and phenological traits are present among woody species in these shrublands. Family diversity was low with four families accounted for 82% of the species. A range of gas exchange and watering use efficiency strategies was present ranging from highly efficient CAM species with a carbon isotope discrimination (Δ) of 3.7–7.5‰ through C3 species with varying stomatal and gas exchange characteristics with a Δ of 14.4 to 19.8‰. Drought-deciduous small-leaved amphistomatic species from arid slopes generally had high stomatal conductance and high carbon assimilation rates during the rainy season. These drought deciduous species were largely leafless and, with one exception had low water potentials, during the dry season. Wash and less xeric site species commonly had broader evergreen to semi-evergreen leaves, higher dry season water potentials, and relatively consistent and moderate rates of gas exchange throughout the year. For all species, intrinsic water use efficiency (as estimated from the inverse of c i :c a ratio) correlated positively with mean leaf width (broader leaves had a lower higher intrinsic WUE) and dry season water potential. The charismatic high altitude tree, Polylepis rugulosa (Roaceae), had a population structure that suggests highly episodic establishment of seedlings, likely in sequences of wet years. Little of the area of these significant shrublands is currently protected. It would be desirable to add areas of pre-altiplano shrublands to adjacent national parks to ensure the persistence of these important communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arroyo M.T.K., Squeo F.A., Armesto J.J. and Villagrán C. 1988.Effects of aridity on plant diversity in the northern Chilean Andes: results of a natural experiment. Annals of the Missouri Botanical Gardens 75: 55–78.

    Article  Google Scholar 

  • Arroyo M.T.K., Villagràn C., Marticorena C. and Armesto J. 1982. Flora y relaciones biogeogràficas en una transecta altitudinal en los Andes del Norte de Chile (18-19° S). In: Velos M. and Bustos E. (eds), El ambiente natural y las poblaciones humanas de los Andes del Norte Grande de Chile (Arica, lat. 18°28′ S).UNESCO, Santiago, pp. 71–92.

  • Cabrera A.L. 1957. La vegetación de la Republica Argentina. VI.La vegetación de la Puna Argentina. Revista de Investigaciones Agrícolas 11: 317–412.

    Google Scholar 

  • CONAF 1986. Plan de manejo del Parque Nacional Lauca. Documento de Trabajo No. 82. Corporación Nacional Forestal, Santiago.

  • Ehleringer J.R. 1993. Carbon and water relations of desert plants: an isotopic perspective. In: Ehleringer J.H., Hall A.E. and Farquhar G.D. (eds), Stable Isotopes and Plant Carbon-water Relations.Academic Press, San Diego, pp. 155–172.

    Google Scholar 

  • Ehleringer J.R., Comstock J.P. and Cooper T.A. 1987. Leaf-twig differences in carbon isotope in twig-photosynthesizing desert shrubs. Oecologia 71: 318–320.

    Article  Google Scholar 

  • Ehleringer J.R. and Cooper T.A. 1988. Correlations between carbon isotope ratio and microhabitat in desert plants. Oecologia 88: 430–434.

    Article  Google Scholar 

  • Ehleringer J.R., Rundel P.W., Palma B. and Mooney H.A. 1998.Carbon isotope ratios of Atacama Desert plants reflect hyperaridity of the region. Revista Chilena de Historia Natural 71: 79–86.

    Google Scholar 

  • Farquhar G.D., O'Leary M.H. and Berry J.A. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration of leaves. Australian Journal of Plant Physiology 9: 121–137.

    Article  CAS  Google Scholar 

  • Gajardo R. 1994. La vegetación natural de Chile: clasificación y distribución geográphica. Editorial Universitaria, Santiago, 165 p.

  • Gajardo Letelier M. 1997. Caracterizaci ón florística de differentes ambientes de la Región Tarapaca (1a Región, Chile). Universidad de Chile, Facultad de Ciencias Agrarias y Forestales, Santiago.Gibson A.C. 1996. Structure-Function Relations of Warm Desert Plants. Springer-Verlag, Berlin.

    Google Scholar 

  • Gibson A.C. and Rundel P.W. 2001. Browningia candelaris in the Andean pre-puna of northern Chile. Cactus and Succulent Journal 73: 27–33.

    Google Scholar 

  • Hensen I. 1995. Die Vegetation von Polylepis-Wäldern der Ostkorrdillere Boliviens. Phytocoenologia 25: 235–277.

    Google Scholar 

  • Hernández S. 1980. Zonificación con fines de manejo de las formaciones vegetales presentes en el Parque Nacional Lauca (1a Región). Universidad de Chile.

  • Kessler M. 1995a. The genus Polylepis (Rosaceae) in Bolivia. Candollea 50: 131–171.

    Google Scholar 

  • Kessler M. 1995b. Revalidacíon de Polylepis rugulosa Bitter (Rosaceae).Gayana Botánica 52: 49–51.

    Google Scholar 

  • Kött A., Gaupp R. and Wörner G. 1995. Miocene to Recent historyof the western Altiplano in northern Chile revealed by lacus-trine sediments of the Lauca Basin (18°15′-18°40′ S/69°05′ W). Geologische Rundschau 84: 770-780.

    Article  Google Scholar 

  • Messerli B., Grosjean M. and Vuille M. 1997. Water availability, protected areas, and natural resources in the Andean desert Altiplano.Mountain Research and Development 17: 229–238.

    Google Scholar 

  • Midgley G.F. and Moll E.J. 1993. Gas exchange in arid-adapted shrubs: When is efficient water use a disadvantage? South African Journal of Botany 59: 491–495.

    Google Scholar 

  • O'Leary M.H. 1988. Carbon isotopes in photosynthesis. Bio-Science 38: 328–336.

    Google Scholar 

  • Pearson O.P. 1951. Mammals in the highlands of southern Peru.Bulletin of the Museum of Comparative Zoology 106: 117– 174.

    Google Scholar 

  • Quintanilla V.G. 1988. Fitogeografia y cartografia de la vegetación de Chile arido. Área Geociencias VI, No. 82, 1–27. Contibuciones Científicas y Tecnológicas.

    Google Scholar 

  • Rundel P.W., Dillon M.O., Palma B., Mooney H.A., Gulmon S.L.and Ehleringer J.R. 1991. The phytogeography and ecology of the coastal Atacama and Peruvian deserts. Aliso 11: 1–50.

    Google Scholar 

  • Rundel P.W., Esler K.J. and Cowling R.M. 1999. Ecological and phylogenetic patterns of carbon isotope discrimination in the winter-rainfall flora of the Richtersveld, South Africa. Plant Ecology 142: 133–148.

    Article  Google Scholar 

  • Rundel P.W. and Palma B. 2000. Preserving the unique puna ecosystems of the Andean Altiplano: Lauca National Park, Chile.Mountain Research and Development 20: 262–271.

    Article  Google Scholar 

  • Rundel P.W., Palma B., Dillon M.O., Sharifi M.R., Nilsen E.T. and Boonpragob K. 1997. EsTillandsia landbeckii in the coastal Atacama Desert of northern Chile. Revista Chilena de Historia Natural 70: 341–348.

    Google Scholar 

  • Ruthsatz B. 1977. Pflanzengesellschafen und ihre Lebensbedingungen in den andinen Halbwüsten Nordwest-Argentiniens. Dissertations Botanicas 39: 1–168.

    Google Scholar 

  • Simpson B.B. 1975. Pleistocene changes in the flora of the high tropical Andes. Paleobiology 1: 273–294.

    Google Scholar 

  • Simpson B. 1979. A review of the genus Polylepis (Rosaceae: Sanguisorbeae).Smithsonian Contributions to Botany 43: 1–62.

    Google Scholar 

  • Villagràn C., Arroyo M.T.K. and Armesto J. 1982. Vegetaciòn de una transecta altitudinal de Norte de Chile (18-19° S). In: Velos M. and Bustos E. (eds), El Ambiente Natural y las Poblaciones Humanas de los Andes del Norte Grande de Chile (Arica, Lat. 18°28′ S). UNESCO, Santiago, pp. 13-70.

  • Wand S.J.E., Esler K.J., Rundel P.W. and Sherwin H.W. 1999. A preliminary study of the responsiveness to seasonal atmospheric and rainfall patterns of wash woodland species in the arid Richtersveld. Plant Ecology 142: 149–160.

    Article  Google Scholar 

  • Weberbauer A. 1936. Phytogeography of the Peruvian Andes. Field Museum of Natural History (Chicago). Botanical Series 13: 13–81.

    Google Scholar 

  • Winter K. and Troughton J.H. 1978. Photosynthetic pathways in plants of coastal and inland habitats of Israel and the Sinai.Flora 167: 1–34.

    CAS  Google Scholar 

  • Ziegler H., Batanouny K.H., Sankhla N., Vyas O.P. and Stichler W. 1981. The photosynthetic pathway types of some desert plants from India, Saudi Arabia, Egypt and Iraq. Oecologia 48: 93– 99.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.W. Rundel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rundel, P., Gibson, A., Midgley, G. et al. Ecological and ecophysiological patterns in a pre-altiplano shrubland of the Andean Cordillera in northern Chile. Plant Ecology 169, 179–193 (2002). https://doi.org/10.1023/A:1026075721045

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026075721045

Navigation