Skip to main content
Log in

Genetic Variation of Microsatellite Loci in the Major Histocompatibility Complex (MHC) Region in the Southeast Asian House Mouse (Mus musculus castaneus)

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Major histocompatibility complex (MHC) genes are the most polymorphic loci known for vertebrates. Here we employed five microsatellite loci closely linked to the MHC region in an attempt to study the amount of genetic variation in 19 populations of the southeast Asian house mouse (Mus musculus castaneus) in Taiwan. The overall polymorphism at the five loci was high (He = 0.713), and the level of polymorphism varied from locus to locus. Furthermore, in order to investigate if selection is operating on MHC genes in natural mouse populations, we compared the extent and pattern of genetic variation for the MHC-linked microsatellite loci (the MHC loci) with those for the microsatellite loci located outside the MHC region (the non-MHC loci). The number of alleles and the logarithm of variance in repeat number were significantly higher for the MHC loci than for the non-MHC loci, presumably reflecting linkage to a locus under balancing selection. Although three statistical tests used do not provide support for selection, their lack of support may be due to low statistical power of the tests, to weakness of selection, or to a profound effect of genetic drift reducing the signature of balancing selection. Our results also suggested that the populations in the central and the southwestern regions of Taiwan might be one part of a metapopulation structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ausubel, F.M., R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith & K. Struhl, 1995. Short Protocols in Molecular Biology-A Compendium of Methods from Current Protocols in Molecular Biology, Wiley, Canada, 3rd edn.

    Google Scholar 

  • Bachtrog, D., M. Agis, M. Imhof & C. Schlötterer, 2000. Microsatellite variability differs between dinucleotide repeat motifs-evidence from Drosophila melanogaster. Mol. Biol. Evol. 17: 1277–1285.

    Google Scholar 

  • Barker, J.S.F., S.S. Moore, D.J.S. Hetzel, D. Evans, S.G. Tan & K. Byrne, 1997. Genetic diversity of Asian water buffalo (Bubalus bubalis): microsatellite variation and a comparison with proteincoding loci. Anim. Genet. 28: 103–115.

    Google Scholar 

  • Belich, M.P., J.A. Madrigal, W.H. Hildebrand, J. Zemmour, R.C. Williams, R. Luz, M.L. Petzl-Erler & P. Parham, 1992. Unusual HLA-B alleles in two tribes of Brazilian Indians. Nature 257: 326–329.

    Google Scholar 

  • Boyce, W.M., P.W. Hedrick, N.E. Muggli-Cockett, S. Kalinowski, M.C.T. Penedo & R.R. Ramey, 1997. Genetic variation of major histocompatibility complex and microsatellite loci: a comparison in bighorn sheep. Genetics 145: 421–433.

    Google Scholar 

  • Chou, C.-W., P.-F. Lee, K.-H. Lu & H.-T. Yu, 1998. A population study of house mice (Mus musculus castaneus) inhabiting rice granaries in Taiwan. Zool. Stud. 37(3): 201–212.

    Google Scholar 

  • Clark, A. & T. Kao, 1991. Excess nonsynonymous substitutions at shared polymorphic sites among self-incompatibility alleles of Solanaceae. Proc. Natl. Acad. Sci. USA 88: 9823–9827.

    Google Scholar 

  • Dallas, J.F., B. Dod, P. Boursot, E.M. Prager & F. Bonhomme, 1995. Population subdivision and gene flow in Danish house mice. Mol. Ecol. 4: 311–320.

    Google Scholar 

  • Dietrich, W.F., J. Miller, R. Steen, M.A. Merchant, D. Damron-Boles, Z. Husain, R. Dredge, M.J. Daly, K.A. Ingalls, T.J. O'Connor, C.A. Evans, M.M. DeAngelis, D.M. Levinson, L. Kruglyak, N. Goodman, N.G. Copeland, N.A. Jenkins, T.L. Hawkins, L. Stein, D.C. Page & E.S. Lander, 1996. A comprehensive genetic map of the mouse genome. Nature 380: 149–152.

    Google Scholar 

  • Ellegren, H.

  • C.J. Davies & L. Andersson, 1993. Strong association between polymorphisms in an intronic microsatellite and in the coding sequence of the BoLA-DRB3 gene: implications for microsatellites stability and PCR-based DRB3 typing. Anim. Genet. 24: 269–275.

    Google Scholar 

  • Estoup, A. & J.-M. Cornuet, 1999. Microsatellite evolution: inferences from population data, pp. 49–65 in Microsatellites: Evolution and Application, edited by D.B. Goldstein & C. Schlötterer. Oxford University Press, New York.

    Google Scholar 

  • Ewens, W.J., 1972. The sampling theory of selectively neutral alleles. Theor. Pop. Biol. 3: 87–112.

    Google Scholar 

  • Goldstein, D.B., A.R. Linares, L.L. Cavalli-Sforza & M.W. Feldman, 1995. Genetic absolute dating based on microsatellites and the origin of modem humans. Proc. Natl. Acad. Sci. USA 92: 6723–6727.

    Google Scholar 

  • Goudet, J., 1995. FSTAT (version 1.2): a computer program to calculate F-statistics. J. Hered. 86: 485–486.

    Google Scholar 

  • Grimsley, C., K.A. Mather & C. Ober, 1998. HLA-H: a pseudogene with increased variation due to balancing selection at neighboring loci. Mol. Biol. Evol. 15(12): 1581–1588.

    Google Scholar 

  • Guo, S.W. & E.A. Thompson, 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48: 361–372.

    Google Scholar 

  • Hambuch, T.M. & E.A. Lacey, 2000. Contrasting patterns of MHC and microsatellite diversity in social and solitary tuco-tucos (Rodentia: Ctenomyidae), pp. 542–554 in Major Histocompatibility Complex: Evolution, Structure, and Function, edited by M. Kasahara. Springer, Tokyo.

    Google Scholar 

  • Harr, B., B. Zangerl, G. Brem & C. Schlötterer, 1998. Conservation of locus specific microsatellite variability across species: a comparison of two Drosophila sibling species D. melanogaster and D. simulans. Mol. Biol. Evol. 15: 176–184.

    Google Scholar 

  • Hood, L., M. Steinmetz & B. Malissen, 1983. Genes of the major histocompatibility complex of the mouse. Ann. Rev. Immunol. 1: 529–568.

    Google Scholar 

  • Hudson, R.R. & N.L. Kaplan, 1988. The coalescent process in models with selection and recombination. Genetics 120: 831–840.

    Google Scholar 

  • Hughes, A.L., 2000. Balancing selection: the major histocompatibility complex, pp. 54–89 in Adaptive Evolution of Genes and Genomes. Oxford University Press, New York.

    Google Scholar 

  • Hughes, A.L. & M. Nei, 1989. Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc. Natl. Acad. Sci. USA 86: 958–962.

    Google Scholar 

  • Hughes, A.L. & M. Yeager, 1998. Natural selection at major histocompatibility complex loci of vertebrates. Ann. Rev. Genet. 32: 415–435.

    Google Scholar 

  • Huttley, G.A., M.W. Smith, M. Carrington & S.J. O'Brein, 1999. A scan for linkage disequilibrium across the human genome. Genetics 152: 1711–1722.

    Google Scholar 

  • Kaplan, N.L., T. Darden & R.R. Hudson, 1988. The coalescent process in models with selection. Genetics 120: 819–829.

    Google Scholar 

  • Kaplan, N.L., R.R. Hudson & C.H. Langley, 1989. The hitchhiking effect revisited. Genetics 123(4): 887–899.

    Google Scholar 

  • Karl, S.A. & J.C. Avise, 1993. Balancing selection at allozyme loci in oysters: implications from nuclear RFLPs. Science 256: 100–102.

    Google Scholar 

  • Klitz, W., G. Thomson & M.P. Baur, 1986. Contrasting evolutionary histories among tightly linked HLA loci. Am. J. Hum. Genet. 39: 340–349.

    Google Scholar 

  • Kohn, M.H., H.-J. Pelz & R.K. Wayne, 2000. Natural selection mapping of the warfarin-resistance gene. Proc. Natl. Acad. Sci. USA 97(14): 7911–7915.

    Google Scholar 

  • Koob, M.D., M.L. Moseley, L.J. Schut, K.A. Benzow, T.D. Bird, J.W. Day & L.P.W. Ranum, 1999. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat. Genet. 21(4): 379–384.

    Google Scholar 

  • Landry, C. & L. Bernatchez, 2001. Comparative analysis of population structure across environments and geographical scales at major histocompatibility complex and microsatellite loci in Atlantic salmon (Salmo salar). Mol. Ecol. 10: 2525–2539.

    Google Scholar 

  • Lewontin, R.C. & J. Krakauer, 1973. Distribution of gene frequency as a test of the theory of selective neutrality of polymorphisms. Genetics 74: 175–195.

    Google Scholar 

  • Lynch, M., M. Pfrender, K. Spitze, N. Lehman, J. Hicks, D. Allen, L. Latta, M. Ottene, F. Bogue & J. Colbourne, 1999. The quantitative and molecular genetic architecture of a subdivided species. Evolution 53: 100–110.

    Google Scholar 

  • Mack, S.J., T.L. Bugawan, M. Stoneking, M. Saha, H.-P. Beck & H.A. Erlich, 2000. HLA class I and class II loci in Pacific/Asian populations, pp. 427–445 in Major Histocompatibility Complex: Evolution, Structure, and Function, edited by M. Kasahara. Springer, Tokyo.

    Google Scholar 

  • Mantel, N., 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209–220.

    Google Scholar 

  • Maynard Smith, J. & J. Haigh, 1974. The hitch-hiking effect of a favorable gene. Genet. Res. Camb. 23: 23–35.

    Google Scholar 

  • Meagher, S. & W.K. Potts, 1997. A microsatellite-based MHC genotyping system for house mice (Mus domesticus). Hereditas 127: 75–82.

    Google Scholar 

  • Melvold, R.W., K. Wang & H.I. Kohn, 1997. Histocompatibility gene mutation rates in the mouse: a 25–year review. Immunogenetics 47: 44–54.

    Google Scholar 

  • Meyer, D. & R. Blasczyk, 2000. The effect of mutation, recombination and selection on HLA non-coding sequences, pp. 398–411 in Major Histocompatibility Complex: Evolution, Structure, and Function, edited by M. Kasahara. Springer, Tokyo.

    Google Scholar 

  • Minch, E., A. Ruiz-Linares, D. Goldstein, M. Feldman & L.L. Cavalli-Sforza, 1995. Microsat (version 1.4d): a computer program for calculating various statistics on microsatellite allele data.

  • Nadeau, J.H., R.L. Collins & J. Klein, 1982. Organization and evolution of the mammalian genome. I. Polymorphism of H-2 linked loci. Genetics 102: 583–598.

    Google Scholar 

  • Nei, M., 1972. Genetics distance between populations. Am. Nat. 106: 283–292.

    Google Scholar 

  • Nei, M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.

    Google Scholar 

  • Nei, M. & W.-H. Li, 1980. Non-random association between electromorphs and inversion chromosomes in finite populations. Genet. Res. Camb. 35: 65–83.

    Google Scholar 

  • Nei, M. & A.L. Hughes, 1991. Polymorphism and evolution of the Major histocompatibility complex loci in mammals, pp. 222–247 in Evolution at the Molecular Level, edited by R.K. Selander, A.G. Clark & T.S. Whittam. Sinauer Associates Inc., Sunderland, MA.

    Google Scholar 

  • O'hUigin, C., Y. Satta, A. Hausmann, R.L. Dawkins & J. Klein, 2000. The implications of intergenic polymorphism for major histocompatibility complex evolution. Genetics 156(2): 867–877.

    Google Scholar 

  • Paterson, S., 1998. Evidence for balancing selection at the major histocompatibility complex in a free-living ruminant. J. Hered. 89: 289–294.

    Google Scholar 

  • Pogson, G.H., K.A. Mesa & R.G. Boutilier, 1995. Genetic population structure and gene flow in the Atlantic cod Gadus morhua: a comparison of allozyme and nuclear RFLP loci. Genetics 139: 376–385.

    Google Scholar 

  • Potts, W.K. & E.K. Wakeland, 1993. Evolution of MHC genetic diversity: a tale of incest, pestilence and sexual preference. Trends Genet. 9(12): 408–412.

    Google Scholar 

  • Raymond, M. & F. Rousset, 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Heredity 86: 248–249.

    Google Scholar 

  • Richman, R., M. Uyenoyama & J. Kohn, 1996. Allelic diversity and gene genealogy at the self-incompatibility locus in the Solanaceae. Science 273: 1212–1216.

    Google Scholar 

  • Rousset, F., 1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145: 1219–1228.

    Google Scholar 

  • Rubinsztein, D.C., 1999. Trinucleotide expansion mutation cause diseases which do not conform to classical Mendelian expectation, pp. 80–97 in Microsatellites-Evolution and Applications, edited by D.B. Goldstein & C. Schlötterer. Oxford University Press, New York.

    Google Scholar 

  • Satta, Y., 1997. Effects of intra-locus recombination of HLA polymorphism. Hereditas 127: 105–112.

    Google Scholar 

  • Satta, Y., Y.-J. Li & N. Takahata, 1998. The neutral theory and natural selection in the HLA region. Frontier Biosci. 3: d459–d467.

  • Satta, Y. & N. Takahata, 2000. Polymorphism in the HLA class I region, pp. 398–411 in Major Histocompatibility Complex: Evolution, Structure, and Function, edited by M. Kasahara. Springer, Tokyo.

    Google Scholar 

  • Satta, Y., C. O'hUigin, N. Takahata & J. Klein, 1993. The synonymous substitution rate of the major histocompatibility complex loci in primates. Proc. Natl. Acad. Sci. USA 90: 7480–7484.

    Google Scholar 

  • Satta, Y., C. O'hUigin, N. Takahata & J. Klein, 1994. Intensity of natural selection at the major histocompatibility complex loci. Proc. Natl. Acad. Sci. USA 91: 7184–7188.

    Google Scholar 

  • Schierup, M.H., X. Vekemans & D. Charlesworth, 2000a. The effect of subdivision on variation at multi-allelic loci under balancing selection. Genet. Res. Camb. 76: 51–62.

    Google Scholar 

  • Schierup, M.H., D. Charlesworth & X. Vekemans, 2000b. The effect of hitch-hiking on genes linked to a balanced polymorphism in a subdivided population. Genet. Res. Camb. 76: 63–73.

    Google Scholar 

  • Schlötterer, C. & D. Tautz, 1992. Slippage synthesis of simple sequence DNA. Nucl. Acid Res. 20: 211–215.

    Google Scholar 

  • Schlötterer, C. & T. Wiehe, 1999. Microsatellites, a neutral marker to infer selective sweeps, in Microsatellites: Evolution and Application, edited by D.B. Goldstein & C. Schlötterer. Oxford University Press, New York.

    Google Scholar 

  • Schlötterer, C., B. Amos & D. Tautz, 1991. Conservation of polymorphic simple sequence loci in cetacean species. Nature 354: 63–65.

    Google Scholar 

  • Schlötterer, C., C. Vogl & D. Tautz, 1997. Polymorphism and locusspecific effects on polymorphism at microsatellite loci in natural Drosophila melanogaster populations. Genetics 146: 309–320.

    Google Scholar 

  • Schlötterer, C., R. Ritter, B. Harr & G. Brem, 1998. High mutation rates of a long microsatellite allele in Drosophila melanogaster provide evidence for allele-specific mutation rates. Mol. Biol. Evol. 15: 1269–1274.

    Google Scholar 

  • Schug, M.D., C.M. Hutter, K.A. Wetterstrand, M.S. Gaudette, T.F. Mackay & C.F. Aquadro, 1998. The mutation rates of di-, tri-, and tetranucleotide repeats in Drosophila melanogaster. Mol. Biol. Evol. 15: 1751–1760.

    Google Scholar 

  • Shriver, M.D., L. Jin, R. Chakraborty & E. Boerwinkle, 1993. VNTR allele frequency distributions under the SMM: A computer simulation approach. Genetics 134: 983–993.

    Google Scholar 

  • Slatkin, M., 1995. Hitchhiking and associative overdominance at a microsatellite locus. Mol. Biol. Evol. 12(3): 473–480.

    Google Scholar 

  • Spitze, K., 1993. Population structure in Daphnia obtuse: quantitative genetic and allozymic variation. Genetics 135: 367–374.

    Google Scholar 

  • Strobeck, C., 1983. Expected linkage disequilibrium for a neutral locus linked to a chromosomal arrangement. Genetics 103: 545–555.

    Google Scholar 

  • Takahata, N. & M. Nei, 1990. Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124: 967–978.

    Google Scholar 

  • Takahata, N., Y. Satta & J. Klein, 1992. Polymorphism and balancing selection at major histocompatibility complex loci. Genetics 130: 925–938.

    Google Scholar 

  • Thornton, C.A., J.P. Wymer, Z. Simmons, C. McClain & R.T. Moxley III, 1997. Expansion of the myotonic dystrophy CTG repeat reduces expression of the flanking DMAHP gene. Nat. Genet. 16: 407–409.

    Google Scholar 

  • Titus-Trachtenberg, E.A., T.L. Bugawan & H.A. Erlich, 1994. Identification of a novel DQB1 allele (*0609) segregating in an Ashkenazi Jewish family: implications for DQB1 typing systems. Tissue Antigens 44(2): 120–124.

    Google Scholar 

  • Watkins, D.I., S.N. McAdam, X. Liu, C.R. Strang, E.L. Milford, C.G. Levine, T.L. Garber, A.L. Dogon, C.I. Lord, S.H. Ghim, G.M. Troup, A.L. Hughes & N.L. Letvin, 1992. New recombinant HLA-B alleles in a tribe of South American Amerindians indicate rapid evolution of MHC class I loci. Nature 357: 329–333.

    Google Scholar 

  • Watkins, W.S., M. Bamshad & L.B. Jorde, 1995. Population genetics of trinucleotide repeat polymorphism. Hum. Mol. Genet. 4(9): 1485–1491.

    Google Scholar 

  • Watterson, G.A., 1978. The homozygosity test of neutrality. Genetics 88: 405–417.

    Google Scholar 

  • Weir, B.S. & C.C. Cockerham, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.

    Google Scholar 

  • Yu, H.T. & Y.H. Peng, 2002. Population differentiation and gene flow revealed by microsatellite DNA markers in the house mouse (Mus musculus castaneus) in Taiwan. Zool. Sci. 19(3): 475–483.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hon-Tsen Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, SW., Yu, HT. Genetic Variation of Microsatellite Loci in the Major Histocompatibility Complex (MHC) Region in the Southeast Asian House Mouse (Mus musculus castaneus). Genetica 119, 201–218 (2003). https://doi.org/10.1023/A:1026061216816

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026061216816

Navigation