Skip to main content
Log in

Large Changes in the Structure of the Major Histone H1 Subtype Result in Small Effects on Quantitative Traits in Legumes

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Electrophoretic analysis of the most abundant subtype of histone H1 (H1-1) of 301 accessions of grasspea (Lathyrus sativus) and 575 accessions of lentil (Lens culinaris) revealed allelic variants which most probably arose due to recent mutations. In each species, a single heterozygote for a mutation was taken for construction of isogenic lines carrying different H1-1 variants. Sequencing of alleles encoding H1-1 in lentil, grasspea, pea and Lathyrus aphaca showed the presence of an extended region in C-terminal tail which we termed ‘regular zone’ (RZ). It consists of 14 6-amino-acid units of which 12 (pea and Lathyrus species) or 13 (lentil) are represented by an AKPAAK sequence. The structure of the hypervariable unit 8 is species-specific. At the DNA level most AKPAAK units differ in the third codon positions, implying the action of natural selection preserving the RZ organization. In lentil, the fast variant lost two units (including unit 8), while one AKPAAK repeat of the slow variant is transformed into an anomalous SMPAAK. The mutant variant of the grasspea H1-1 differs from the standard one by duplication of an 11-amino-acid segment in N-terminal tail. The isogenic lines of lentil and grasspea were compared for a number of quantitative traits, some of them showing small (1–8%) significant differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, S., Y. Ito & E. Davies, 1995. Isolation of a heparin sensitive, ribosome sedimenting factor from the cytoskeleton fraction from peas and corn. Plant Physiol. Bioch. 38: 463–470.

    Google Scholar 

  • Allan, J., P.G. Hartman, C. Crane-Robinson & F.X. Aviles, 1980. The structure of histone H1 and its location in chromatin. Nature 288: 675–679.

    Google Scholar 

  • Allan, J., N. Mitchell, L. Harborne, C. Bohm & C. Crane-Robinson, 1986. Roles of H1 domains in determining higher order chromatin structure and H1 location. J. Mol. Biol. 187: 591–601.

    Google Scholar 

  • Barra, J.L., L. Rhounim, J.-L. Rossignol & G. Faugeron, 2000. Histone H1 is dispensable for methylation-associated gene silencing in Ascobolus immersus and essential for long life span. Mol. Cell. Biol. 20: 61–69.

    Google Scholar 

  • Belyaev, A.I. & V.A. Berdnikov, 1985. Interspecies polymorphism of H1 histone of the wild Fabaceae species. Genetika+ 21: 605–613.

    Google Scholar 

  • Berdnikov, V.A. & F.L. Gorel, 1975. A study of ratios between histone fractions. Molekulyarnaya Biologiya (USSR) 9: 699–705.

    Google Scholar 

  • Berdnikov, V.A., V.S. Bogdanova, F.L. Gorel & S.M. Rozov, 1992. Territorial distribution of histone H1 alleles in a population of Vicia unijuga A. Br. formed after urbanization of natural habitat. Can. J. Bot. 70: 1591–1595.

    Google Scholar 

  • Berdnikov, V.A., S.M. Rozov, S.V. Temnykh, F.L. Gorel & O.E. Kosterin, 1993a. Adaptive nature of interspecies variation of histone H1 in insects. J. Mol. Evol. 36: 497–507.

    Google Scholar 

  • Berdnikov, V.A., V.S. Bogdanova, S.M. Rozov & O.E. Kosterin, 1993b. The geographic patterns of histone H1 allelic frequencies formed in the course of pea (Pisum sativum L.) cultivation. Heredity 71: 199–209.

    Google Scholar 

  • Berdnikov, V.A., F.L. Gorel, V.S. Bogdanova, O.E. Kosterin, Y.A. Trusov & S.M. Rozov, 1999. Effect of a substitution of a short chromosome segment carrying a histone H1 locus on expression of the homeotic gene Tl in heterozygote in the garden pea Pisum sativum L. Genet. Res. 73: 93–109.

    Google Scholar 

  • Bogdanova, V.S., S.M. Rozov, Y.A. Trusov & V.A. Berdnikov, 1994. Phenotypic effect of substitutions of short chromosomal segments containing different alleles of histone H1 genes in garden pea (Pisum sativum L.). Genet. Res. 64: 35–41.

    Google Scholar 

  • Bouvet, P., S. Dimitrov & A.P. Wolffe, 1994. Specific regulation of Xenopus chromosomal 5S rRNA gene transcription in vivo by histone H1. Gene. Dev. 8: 1147–1159.

    Google Scholar 

  • Buard, J., A. Bourdet, J. Yardley, Y. Dubrova & A.J. Jeffreys, 1998. Complex recombination events at the hypermutable minisatellite CEB1 (D2S90). EMBO J. 13: 3203–3210.

    Google Scholar 

  • Comeron, J.M., 1995. A method for estimating the numbers of synonymous and nonsynonymous substitutions per site. J. Mol. Evol. 41: 1152–1159.

    Google Scholar 

  • Comeron, J.M., 1999. K-estimator: calculation of the number of nucleotide substitutions per site and the confidence intervals. Bioinformatics 15: 763–764.

    Google Scholar 

  • Corpet, F., 1988. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16: 10881–10890.

    Google Scholar 

  • Deretic, V. & W.M. Konyecsni, 1990. A prokaryotic regulatory factor with a histone H1–like carboxy-terminal domain: clonal variation of repeats within algP, a gene involved in regulation of mucoidy in Pseudomonas aeruginosa. J. Bacteriol. 172: 5544–5554.

    Google Scholar 

  • Ellegren, H., 2000. Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet. 16: 551–557.

    Google Scholar 

  • Escher, D. & W. Shaffner, 1997. Gene activation at a distance and telomeric silencing are not affected by yeast histone H1. Mol. Gen. Genet. 256: 456–461.

    Google Scholar 

  • Fan, Y., A. Sirotkin, R.G. Russel, J. Ayala & A.I. Skoultchi, 2001. Individual somatic H1 subtypes are dispensable for mouse development even in mice lacking the H1(0) replacement subtype. Mol. Cell. Biol. 21: 7933–7443.

    Google Scholar 

  • Gantt, J.C. & J.L. Key, 1987. Molecular cloning of a pea H1 histone cDNA. Eur. J. Biochem. 166: 119–125.

    Google Scholar 

  • Gorel, F.L. & V.A. Berdnikov, 1993. Linkage of loci encoding H1 histone and a cotyledon protein in lentil. J. Hered. 84: 131–133. J. Biochem. 223: 693–699.

    Google Scholar 

  • Jedrusik, M.A. & E. Schulze, 2001. A single histone H1 isoform (H1.1) is essential for chromatin silencing and germline development in Caenorhabditis elegans. Development 128: 1069–1080.

    Google Scholar 

  • Johns, E.W., 1964. Studies of histones. 7. Preparative methods for histone fractions from calf thymus. Biochem. J. 92: 55–59.

    Google Scholar 

  • Kimura, M., 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kosterin, O.E., V.S. Bogdanova, F.L. Gorel, S.M. Rozov, Y.A. Trusov & V.A. Berdnikov, 1994. Histone H1 of the garden pea (Pisum sativum L.); composition, developmental changes, allelic polymorphism and inheritance. Plant Sci. 101: 189–202.

    Google Scholar 

  • Laybourn, P.J. & J.T. Kadonaga, 1992. Threshold phenomena and long-distance activation of transcription by RNA polymerase II. Science 257: 1682–1685.

    Google Scholar 

  • Levinson, G. & G.A. Gutman, 1987. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4: 203–221.

    Google Scholar 

  • Lin, Q., A. Sirotkin & A.I. Skoultchi, 2000. Normal spermatogenesis in mice lacking the testis-specific linker histone H1t. Mol. Cell. Biol. 20: 2122–2128.

    Google Scholar 

  • Panyim, S. & R. Chalkley, 1969. High resolution in acrylamide gel electrophoresis of histones. Arch. Biochem. Biophys. 130: 337.

    Google Scholar 

  • Pâques, F., G.-F. Richard & J.E. Haber, 2001. Expansions and contractions in 36–bp minisatellites by gene conversion in yeast. Genetics 158: 155–166.

    Google Scholar 

  • Prymakowska-Bosak, M., M.R. Przewloka, J. Slusarczyk, M. Kuras, J. Lichota, B. Kilianczyk & A. Jerzmanowski, 1999. Linker histones play a role in male meiosis and the development of pollen grains in tobacco. Plant Cell 11: 2317–2329.

    Google Scholar 

  • Przewloka, M.R., A.T. Wierzbicki, J. Slusarczyk, M. Kuras, K.D. Grasser, C. Stemmer & A. Jerzmanowski, 2002. The 'drought-inducible' histone H1s of tobacco play no role in male sterility linked to alterations in H1 variants. Planta 215: 371–379.

    Google Scholar 

  • Ramakrishnan, V., 1997. Histone structure and the organization of the nucleosome. Annu. Rev. Bioph. Biom. 26: 83–112.

    Google Scholar 

  • Ramon, A., M.I. Muro-Pastor, C. Scazzocchio, R. Gonzalez, 2000. Deletion of the unique gene encoding a typical histone H1 has no apparent phenotype in Aspergillus nidulans. Mol. Microbiol. 35: 223–233

    Google Scholar 

  • Rozov, S.M., V.S. Bogdanova & V.A. Berdnikov, 1986. Different chromosomal localizations of genes coding for Pisum histone H1 fractions. Genetika+ 22: 2159–2166.

    Google Scholar 

  • Sato, M.H., K. Ura, K.I. Hohmura, F. Tokumasu, S.H. Yoshimura, F. Hanaoka & K. Takeyasu, 1999. Atomic force microscopy sees nucleosome positioning and histone H1–induced compaction in reconstituted chromatin. FEBS Lett. 452: 267–271.

    Google Scholar 

  • Schulze, E. & B. Schulze, 1995. The vertebrate linker histone H1–0, H5, and H1–M are descendants of invertebrate 'orphon' histone H1 genes. J. Mol. Evol. 41: 833–840.

    Google Scholar 

  • Sera, T. & A.P. Wolffe, 1998. Role of histone H1 as an architectural determinant of chromatin structure and as a specific repressor of transcription on Xenopus oocyte 5S rRNA genes. Mol. Cell. Biol. 18: 3668–3680.

    Google Scholar 

  • Serra, J.A., 1966. Modern Genetics, Vol. 2, Academic Press, London.

    Google Scholar 

  • Shen, X. & M.A. Gorovsky, 1996. Linker histone H1 regulates specific gene expression but not global transcription in vivo. Cell 86: 475–483.

    Google Scholar 

  • Shen, X., L. Yu, J.W. Weir & M.A. Gorovsky, 1995. Linker histones are not essential and affect chromatin condensation in vivo. Cell 82: 47–56.

    Google Scholar 

  • Sirotkin, A.M., W. Edelmann, H. Cheng, A. Klein-Szanto, R. Kucherlapati & A.I. Skoultchi, 1995. Mice develop normally without the H1° linker histone. P. Natl. Acad. Sci. USA 92: 6434–6438.

    Google Scholar 

  • Steinbach, O.C., A.P. Wolffe & R.A. Rupp, 1997. Somatic linker histones cause loss of mesodermal competence in Xenopus. Nature 389: 395–399.

    Google Scholar 

  • Tanaka, I., Y. Akahori, K. Gomi, T. Suzuki & K. Ueda, 1999. A novel histone variant localized in nucleoli of higher plant cells. Chromosoma 108: 190–199.

    Google Scholar 

  • Thoma, F., R. Losa & T. Koller, 1983. Involvement of the domains of histones H1 and H5 in the structural organization of soluble chromatin. J. Mol. Biol. 167: 619–640.

    Google Scholar 

  • Trieschmann, L., E. Schulze, B. Schulze & U. Grossbach, 1997. The histone H1 genes of the dipteran insect, Chironomus thummi, fall under two divergent classes and encode proteins with distinct intranuclear distribution and potentially different functions. Eur. J. Biochem. 250: 184–196.

    Google Scholar 

  • Weeden, N., T.H.N. Ellis, G.M. Timmerman-Vaughan, W.K. Swiecicki, S.M. Rozov & V.A. Berdnikov, 1998. A consensus linkage map for Pisum sativum. Pisum Genet. 30: 1–4.

    Google Scholar 

  • Woo, H.H., L.A. Brigham & M.C. Hawes, 1995. Molecular cloning and expression of mRNAs encoding H1 histone and an H1 histone-like sequences in root tips of pea (Pisum sativum L.). Plant Mol. Biol. 28: 1143–1147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berdnikov, V.A., Bogdanova, V.S., Gorel, F.L. et al. Large Changes in the Structure of the Major Histone H1 Subtype Result in Small Effects on Quantitative Traits in Legumes. Genetica 119, 167–182 (2003). https://doi.org/10.1023/A:1026058605485

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026058605485

Navigation