Skip to main content
Log in

Identification of the Key Genes of Naphthalene Catabolism in Soil DNA

  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The key genesnahAc and xylEof the naphthalene catabolism of fluorescent Pseudomonas spp. in total soil DNA samples were detected by the polymerase chain reaction (PCR) technique. The collection of fluorescent Pseudomonas spp. was screened for the occurrence of these genes. The results obtained show the possibility of using this approach in the goal-directed search for plasmid-containing naphthalene-degrading fluorescent pseudomonads in soil. The distribution of the naphthalene catabolism genes in soils contaminated with creosote and petroleum products was also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Manual of Environmental Microbiology, Hurst, C.J. et al., Eds., Washington: ASM, 2002.

    Google Scholar 

  2. Felske, A., Wolterink, A., van Lis, R., de Vos, W.M., and Akkermans, A.D.L., Searching for Predominant Soil Bacteria: 16S rDNA Cloning versus Strain Cultivation, FEMS Microbiol. Ecol., 1999, vol. 30, pp. 137-145.

    Google Scholar 

  3. Zhou, J., Bruns, M.A., and Tiedje, J.M., DNA Recovery from Soils of Diverse Composition, Appl. Environ. Microbiol., 1996, vol. 62, pp. 316-322.

    Google Scholar 

  4. Cerniglia, C.E., Biodegradation of Polycyclic Aromatic Hydrocarbons, Biodegradation, 1992, no. 3, pp. 351-368.

    Google Scholar 

  5. Kosheleva, I.A., Balashova, N.V., Izmalkova, T.Yu., Filonov, A.E., Sokolov, S.L., Slepen'kin, A.V., and Boronin, A.M., Degradation of Phenanthrene by Mutant Naphthalene-degrading Pseudomonas putida Strains, Mikrobiologiya, 2000, vol. 69,no. 6, pp. 783-789.

    Google Scholar 

  6. Yen, K.-M. and Serdar, C.M., Genetics of Naphthalene Catabolism in Pseudomonads, Crit. Rev. Microbiol., 1988, vol. 5, pp. 247-268.

    Google Scholar 

  7. Zylstra, G.J., Kim, E., and Goyal, A.K., Comparative Molecular Analysis of Genes for Polycyclic Aromatic Hydrocarbon Degradation, Genetic Engineering, Setlow, J.K., Ed., New York: Plenum, 1997, vol. 19, pp. 257-369.

    Google Scholar 

  8. King, O.E., Ward, W., and Raney, D.E., Two Simple Media for the Demonstration of Pyocyanin and Fluorescein, J. Lab. Clin. Methods, 1954, vol. 44,no. 2, pp. 301-307.

    Google Scholar 

  9. Birnboim, H.C. and Doly, J.A., A Rapid Alkaline Extraction Procedure for Screening Recombinant Plasmid DNA, Nucleic Acids Res., 1979, vol. 7, pp. 1513-1519.

    Google Scholar 

  10. Rheinwald, J., Chakrabarty, A.M., and Gunsalus, I.C., A Transmissible Plasmid Controlling Camphor Oxidation in Pseudomonas putida, Proc. Natl. Acad. Sci. USA, 1973, vol. 70, pp. 885-889.

    Google Scholar 

  11. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Lab., 1989.

    Google Scholar 

  12. Short Protocols in Molecular Biology, Ausubel, F.M., Ed., New York: John Wiley & Sons, 1995.

    Google Scholar 

  13. Wilson, M.S., Bakermans, C., and Madsen, E.L., In Situ, Real-Time Catabolic Gene Expression: Extraction and Characterization of Naphthalene Dioxygenase mRNA Transcripts from Groundwater, Appl. Environ. Microbiol., 1999, vol. 65, pp. 80-87.

    Google Scholar 

  14. Wilkstrom, P., Wilklund, A., Anderson, A.C., and Forsman, M., DNA Recovery and the PCR Quantification of Catechol 2.3-Dioxygenase Genes from Different Soil Types, J. Biotechnol., 1996, vol. 52, pp. 107-120.

    Google Scholar 

  15. Weisburg, W.G., Barnes, S.M., Pelletier, D.A., and Lane, D.J., 16S Ribosomal DNA Amplification for Phylogenetic Study, J. Bacteriol., 1991, vol. 173, pp. 697-703.

    Google Scholar 

  16. Simon, M.J., Osslund, T.D., Saunders, R., Ensley, B.D., Suggs, S., Harcourt, A., Suen, W.C., Cruden, D.L., Gibson, D.T., and Zylstra, G.J., Sequences of Genes Encoding Naphthalene Dioxygenase in Pseudomonas putida G7 and NCIB 9816-4, Gene, 1993, vol. 127, pp. 31-37.

    Google Scholar 

  17. Nakai, C., Kagamiyama, H., Nozaki, M., Nakazawa, T., Inouye, S., Ebina, Y., and Nakazawa, A., Complete Nucleotide Sequence of the Metapyrocatechase Gene on the TOL Plasmid of Pseudomonas putida mt-2, J. Biol. Chem., 1983, vol. 258, pp. 2923-2928.

    Google Scholar 

  18. Eltis, L.D. and Bolin, J.T., Evolutionary Relationships among Estradiol Dioxygenases, J. Bacteriol., 1996, vol. 178, pp. 5930-5937.

    Google Scholar 

  19. Balashova, N.V., Kosheleva, I.A., Golovchenko, N.P., and Boronin, A.M., Phenanthrene Metabolism by Pseudomonas and Burkholderia Strains, Process Biochem., 1999, vol. 35,no. 3–4, pp. 291-296.

    Google Scholar 

  20. Laurie, A.D. and Lloyd-Jones, G., The phn Genes of Burkholderia sp. Strain RP007 Constitute a Divergent Gene Cluster for Polycyclic Aromatic Hydrocarbon Catabolism, J. Bacteriol., 1999, vol. 181, pp. 531-540.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mavrodi, D.V., Kovalenko, N.P., Sokolov, S.L. et al. Identification of the Key Genes of Naphthalene Catabolism in Soil DNA. Microbiology 72, 597–604 (2003). https://doi.org/10.1023/A:1026055503274

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026055503274

Navigation