Skip to main content
Log in

Triclosan: A shot in the arm for antimalarial chemotherapy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In order that malaria be successfully contained, it is important that one has a clear understanding of the normal physiology and biochemistry of the parasite essential to its survival in its human host. Until very recently, the conventional approaches to antimalarial chemotherapy have consistently been plagued with the uncanny ability of the parasite to evolve resistance to drugs. The recently discovered plasmodial fatty acid biosynthetic pathway as well as its inhibition by triclosan that classifies it as belonging to type II, provide with a very crucial breakthrough to the crusade against malaria. How triclosan could tilt the balance in favor of the human hosts of the malarial parasite in a malarial condition is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO Fact Sheet # 94: Revised October 1998

  2. Surolia N, Satish PR, Surolia A: Paradigm shifts in malaria parasite biochemistry and anti-malarial chemotherapy. BioEssays 24: 192-196, 2002

    Google Scholar 

  3. Trigg PI, Kondrachine AV: The current global malaria situation. In: I.W. Sherman (ed). Malaria Parasite Biology, Pathogenesis, and Protection. ASM Press. Washington, D.C., 1998, pp 11-22

    Google Scholar 

  4. Milhous WK, Kyle DE: Introduction to the modes of action of and mechanisms of resistance to antimalarials. In: W. Sherman (ed). Malaria Parasite Biology, Pathogenesis, and Protection. ASM Press, Washington, D.C., 1998, pp 303-316

    Google Scholar 

  5. Surolia N, Padmanaban G: Chloroquine inhibits heme-dependent protein synthesis in Plasmodium falciparum. Proc Natl Acad Sci USA 88: 4786-4790, 1991

    Google Scholar 

  6. Padmanaban G, Rangarajan PN: Emerging targets for antimalarial drugs. Expert Opin Ther Targets 5: 423-441, 2001

    Google Scholar 

  7. Surolia N, Karthikeyan G, Padmanaban G: Involvement of cytochrome P-450 in conferring chloroquine resistance to the malarial parasite, Plasmodium falciparum. Biochem Biophys Res Commun 197: 562-569, 1993

    Google Scholar 

  8. Surolia N, Surolia A: Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum. Nat Med 7: 167-173, 2001

    Google Scholar 

  9. Beeson JG, Winstanley PA, McFadden GI, Brown GV: New agents to combat malaria. Nature Med 7: 149-150, 2001

    Google Scholar 

  10. Suguna K, Surolia A, Surolia N: Structural basis for triclosan and NAD binding to enoyl-ACP reductase of Plasmodium falciparum. Biochem Biophys Res Commun 283: 224-228, 2001

    Google Scholar 

  11. Kapoor M, Jamal Dar M, Surolia A, Surolia N: Kinetic determinants of the interaction of enoyl-ACP reductase from Plasmodium falciparum with its substrates and inhibitors. Biochem Biophys Res Commun 289: 832-837, 2001

    Google Scholar 

  12. Surolia N, Padmanaban G: De novo biosynthesis of heme offers a new chemotherapeutic target in the human malarial parasite. Biochem Biophys Res Commun 187: 744-750, 1992

    Google Scholar 

  13. Surolia N, Misquith S: Cell surface receptor directed targeting of toxin to human malaria parasite, Plasmodium falciparum. FEBS Lett 396: 57-61, 1996

    Google Scholar 

  14. Surolia N: Receptor-mediated targeting of toxins to intraerythrocytic parasite Plasmodium falciparum. Adv Drug Deliv Rev 41: 163-170, 2000

    Google Scholar 

  15. Bachhawat K, Thomas CJ, Surolia N, Surolia A: Interaction of chloroquine and its analogues with heme: An isothermal titration calorimetric study. Biochem Biophys Res Commun 276: 1075-1079, 2000

    Google Scholar 

  16. Bhat GP, Surolia N: Triclosan and fatty acid synthesis in Plasmodium falciparum: New weapon for an old enemy. J Biosci 26: 1-3, 2001

    Google Scholar 

  17. Bhat GP, Surolia N: In vitro antimalarial activity of extracts of three plants used in the traditional medicine of India. Am J Trop Med Hyg 65: 304-308, 2001

    Google Scholar 

  18. Davis MS, Solbiati J, Cronan JE Jr: Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem 275: 28593-28598, 2000

    Google Scholar 

  19. Volpe JJ, Vagelos PR: Saturated fatty acid biosynthesis and its regulation. Annu Rev Biochem 42: 21-60, 1973

    Google Scholar 

  20. Rock CO, Cronan JE: Escherichia coli as a model for the regulation of dissociable (type II) fatty acid biosynthesis. Biochim Biophys Acta 1302: 1-16, 1996

    Google Scholar 

  21. Harwood JL: Recent advances in the biosynthesis of plant fatty acids. Biochim Biophys Acta 1301: 7-56, 1996

    Google Scholar 

  22. Schneider R, Brors B, Burger F, Camrath S, Weiss H: Two genes of the putative mitochondrial fatty acid synthase in the genome of Saccharomyces cerevisiae. Curr Genet 32: 384-388, 1997

    Google Scholar 

  23. Weeks G, Wakil SJ: Studies on the mechanism of fatty acid synthesis. J Biol Chem 243: 1180-1189, 1968

    Google Scholar 

  24. Matesanz F, Duran-Chica I, Alcina A: The cloning and expression of Pfacs1, a Plasmodium falciparum fatty acyl coenzyme A synthetase-1 targeted to the host erythrocyte cytoplasm. J Mol Biol 291: 59-70, 1999

    Google Scholar 

  25. Bergler H, Wallner P, Ebeling A, Leitinger B, Fuchsbichler S, Aschauer H, Kollenz G, Hogenauer G, Turnowsky F: Protein EnvM is the NADH-dependent enoyl-ACP reductase (FabI) of Escherichia coli. J Biol Chem 269: 5493-5496, 1994

    Google Scholar 

  26. Heath RJ, Rock CO: Enoyl-acyl carrier protein reductase (FabI) plays a determinant role in completing cycles of fatty acid elongation in Escherichia coli. J Biol Chem 270: 26538-26542, 1995

    Google Scholar 

  27. McMurry LM, Oethinger M, Levy SB: Triclosan targets lipid synthesis. Nature 394: 531-532, 1998

    Google Scholar 

  28. Heath RJ, Rubin JR, Holland DR, Zhang E, Snow ME, Rock CO: Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J Biol Chem 274: 11110-11114, 1999

    Google Scholar 

  29. Heath RJ, Yu YT, Shapiro MA, Olson E, Rock CO: Broad spectrum antimicrobial biocides target the FabI component of fatty acid synthesis. J Biol Chem 273: 30316-30320, 1998

    Google Scholar 

  30. Levy CW, Roujeinikova A, Sedelnikova S, Baker PJ, Stuitje AR, Slabas AR, Rice DW, Rafferty JB: Molecular basis of triclosan activity. Nature 398: 383-384, 1999

    Google Scholar 

  31. Fichera ME, Roos DS: A plastid organelle as a drug target in api-complexan parasites. Nature 390: 407-409, 1997

    Google Scholar 

  32. McFadden GI, Reith ME, Munholland J, Lang-Unnasch N: Plastid in human parasites. Nature 381: 482, 1996

    Google Scholar 

  33. McFadden GI, Waller RF: Plastids in parasites of humans. Bioessays 19: 1033-1040, 1997

    Google Scholar 

  34. Kohler S, Delwiche CF, Denny PW, Tilney LG, Webster P, Wilson RJ, Palmer JD, Roos DS: A plastid of probable green algal origin in Api-complexan parasites. Science 275: 1485-1489, 1997

    Google Scholar 

  35. Roos DS, Crawford MJ, Donald RG, Kissinger JC, Klimczak LJ, Striepen B: Origin, targeting, and function of the apicomplexan plastid. Curr Opin Microbiol 2: 426-432, 1999

    Google Scholar 

  36. McFadden GI, Roos DS: Apicomplexan plastids as drug targets. Trends Microbiol 7: 328-333, 1999

    Google Scholar 

  37. He CY, Shaw MK, Pletcher CH, Striepen B, Tilney LG, Roos DS: A plastid segregation defect in the protozoan parasite Toxoplasma gondii. EMBO J 20: 330-339, 2001

    Google Scholar 

  38. Wilson RJM, Denny PW, Preiser PR, Rangachari K, Roberts K, Roy A, Whyte A, Strath M, Moore DJ, Moore PW, Williamson DH: Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J Mol Biol 261: 155-172, 1996

    Google Scholar 

  39. Waller RF, Reed MB, Cowman AF. McFadden GI: Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. EMBO J 19: 1794-1802, 2000

    Google Scholar 

  40. Waller RF, Keeling PJ, Donald RG, Striepen B, Handman E, Lang-Unnasch N, Cowman AF, Besra GS, Roos DS, McFadden GI: Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci USA 95: 12352-12357, 1998

    Google Scholar 

  41. Heath RJ, White SW, Rock CO: Inhibitors of fatty acid synthesis as antimicrobial chemotherapeutics. Appl Microbiol Biotechnol 58: 695-703, 2002

    Google Scholar 

  42. Heath RJ, White SW, Rock CO: Lipid biosynthesis as a target for antibacterial agents. Prog Lipid Res 40: 467-497, 2001

    Google Scholar 

  43. Liu B, Wang Y, Fillgrove KL, Anderson VE: Triclosan inhibits enoyl-reductase of type I fatty acid synthase in vitro and is cytotoxic to MCF-7 and SKBr-3 breast cancer cells. Cancer Chemother Pharmacol 49: 187-193, 2002

    Google Scholar 

  44. Heath RJ, Li J, Roland GE, Rock CO: Inhibition of the Staphylococcus aureus NADPH-dependent enoyl-acyl carrier protein reductase by triclosan and hexachlorophene. J Biol Chem 275: 4654-4659, 2000

    Google Scholar 

  45. Roujeinikova A, Levy CW, Rowsell S, Sedelnikova S, Baker PJ, Minshull CA, Mistry A, Colls JG, Camble R, Stuitje AR, Slabas AR, Rafferty JB, Pauptit RA, Viner R, Rice DW: Crystallographic analysis of triclosan bound to enoyl reductase. J Mol Biol 294: 527-535, 1999

    Google Scholar 

  46. Qiu X, Janson CA, Court RI, Smyth MG, Payne DJ, Abdel-Meguid SS: Molecular basis for triclosan activity involves a flipping loop in the active site. Protein Sci 8: 2529-2532, 1999

    Google Scholar 

  47. Perozzo R, Kuo M, Sidhu AS, Valiyaveettil JT, Bittman R, Jacobs WR Jr, Fidock DA, Sacchettini JC: Structural elucidation of the specificity of the antibacterial agent triclosan for malarial enoyl acyl carrier protein reductase. J Biol Chem 277: 13106-13114, 2002

    Google Scholar 

  48. Jones RD, Jampani HB, Newman JL, Lee AS: Triclosan: A review of effectiveness and safety in health care settings. Am J Infect Control 28: 184-196, 2000

    Google Scholar 

  49. Bhargava HN, Leonard PA: Triclosan: Applications and safety. Am J Infect Control 24: 209-218, 1996

    Google Scholar 

  50. Shapiro S, Giertsen E, Guggenheim B: An in vitro oral biofilm model for comparing the efficacy of antimicrobial mouthrinses. Caries Res 36: 93-100, 2002

    Google Scholar 

  51. Moran J, Addy M, Newcombe RG, Marlow I: A study to assess the plaque inhibitory action of a newly formulated triclosan toothpaste. J Clin Periodontol 28: 86-89, 2001

    Google Scholar 

  52. Saunders KA, Greenman J, McKenzie C: Ecological effects of triclosan and triclosan monophosphate on defined mixed cultures of oral species grown in continuous culture. J Antimicrob Chemother 45: 447-452, 2000

    Google Scholar 

  53. Meincke BE, Kranz RG, Lynch DL: Effect of Irgasan on bacterial growth and its adsorption into the cell wall. Microbios 28: 133-147, 1980

    Google Scholar 

  54. Loftsson T, Leeves N, Bjornsdottir B, Duffy L, Masson M: Effect of cyclodextrins and polymers on triclosan availability and substantivity in toothpastes in vivo. J Pharm Sci 88: 1254-1258, 1999

    Google Scholar 

  55. McClanahan SF, Bartizek RD: Effects of triclosan/copolymer dentifrice on dental plaque and gingivitis in a 3-month randomized controlled clinical trial: Influence of baseline gingivitis on observed efficacy. J Clin Dent 13: 167-178, 2002

    Google Scholar 

  56. Lang NP, Sander L, Barlow A, Brennan K, White DJ, Bacca L, Bartizek RD, McClanahan SF: Experimental gingivitis studies: Effects of triclosan and triclosan-containing dentifrices on dental plaque and gingivitis in three-week randomized controlled clinical trials. J Clin Dent 13: 158-66, 2002

    Google Scholar 

  57. Grossman E, Hou L, Bollmer BW, Court LK, McClary JM, Bennett S, Winston JL, McClanahan SF: Triclosan/pyrophosphate dentifrice: Dental plaque and gingivitis effects in a 6-month randomized controlled clinical study. J Clin Dent 13: 149-57, 2002

    Google Scholar 

  58. Montiel-Company JM, Almerich-Silla JM: Efficacy of two antiplaque and antigingivitis treatments in a group of young mentally retarded patients. Med Oral 7: 136-143, 2002

    Google Scholar 

  59. Cao C, Sha Y, Meng H, Kang J, Yeh CH, Chyon HY, Winston JL: A four-day study to evaluate the anti-plaque efficacy of an experimental triclosan-containing dentifrice. J Clin Dent 12: 87-91, 2001

    Google Scholar 

  60. Jones CL, Ritchie JA, Marsh PD, Van der Ouderaa F: The effect of long-term use of a dentifrice containing zinc citrate and a nonionic agent on the oral flora. J Dent Res 67: 46-50, 1988

    Google Scholar 

  61. Jannesson L, Renvert S, Kjellsdotter P, Gaffar A, Nabi N, Birkhed D: Effect of a triclosan-containing toothpaste supplemented with 10% xylitol on mutans streptococci in saliva and dental plaque. A 6-month clinical study. Caries Res 36: 36-39, 2002

    Google Scholar 

  62. Moran J, Addy M, Corry D, Newcombe RG, Haywood J: A study to assess the plaque inhibitory action of a new zinc citrate toothpaste formulation. J Clin Periodontol 28: 157-161, 2001

    Google Scholar 

  63. Sowinski JA, Battista GW, Petrone DM, Petrone ME, DeVizio W, Volpe AR: A clinical study to assess the anticalculus efficacy of a new dentifrice containing a special grade of silica (Colgate Total Plus Whitening Toothpaste): A clinical trial on adults. J Clin Dent 13: 65-68, 2002

    Google Scholar 

  64. Allen DR, Battista GW, Petrone DM, Petrone ME, Chaknis P, DeVizio W, Volpe AR. The clinical efficacy of Colgate Total Plus Whitening Toothpaste containing a special grade of silica and Colgate Total Fresh Stripe Toothpaste in the control of plaque and gingivitis: A six-month clinical study. J Clin Dent 13: 59-64, 2002

    Google Scholar 

  65. Volpe AR, Petrone ME, Prencipe M, DeVizio W: The efficacy of a dentifrice with caries, plaque, gingivitis, tooth whitening and oral malodor benefits. J Clin Dent 13: 55-58, 2002

    Google Scholar 

  66. Sowinski J, Ayad F, Petrone M, DeVizio W, Volpe A, Ellwood R, Davies R: Comparative investigations of the desensitising efficacy of a new dentifrice. J Clin Periodontol 28: 1032-1036, 2001

    Google Scholar 

  67. Pizzo G, Giuliana, D'Angelo MD: Effect of antimicrobial mouthrinses on the in vitro adhesion of Candida albicans to human buccal epithelial cells. Clin Oral Investig 5: 172-176, 2001

    Google Scholar 

  68. Drisko CH: Non-surgical periodontal therapy. Periodontol 2000 25: 77-88, 2001

    Google Scholar 

  69. Fraise AP: Susceptibility of antibiotic-resistant cocci to biocides. J Appl Microbiol 92Suppl: 158S-162S, 2002

    Google Scholar 

  70. Russell AD: Introduction of biocides into clinical practice and the impact on antibiotic-resistant bacteria. J Appl Microbiol 92(suppl): 121S-135S, 2002

    Google Scholar 

  71. Braid JJ, Wale MC: The antibacterial activity of triclosan-impregnated storage boxes against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus and Shewanella putrefaciens in conditions simulating domestic use. J Antimicrob Chemother 49: 87-94, 2002

    Google Scholar 

  72. Li Q, Lee JY, Castillo R, Hixon MS, Pujol C, Doppalapudi VR, Shepard HM, Wahl GM, Lobl TJ, Chan MF: NB2001, a novel antibacterial agent with broad-spectrum activity and enhanced potency against beta-Lactamase-producing strains. Antimicrob Agents Chemother 46: 1262-1268, 2002

    Google Scholar 

  73. Bartzokas CA, Corkill JE, Makin T, Pinder DC: Assessment of the remanent antibacterial effect of a 2% triclosan-detergent preparation on the skin. J Hyg (Lond) 91: 521-528, 1983

    Google Scholar 

  74. Gautier G, Noguer M, Costa N, Canela J, Vinas M: Mouthrinses: A comparative microbiological study. Bull Group Int Rech Sci Stomatol Odontol 42: 23-29, 2000

    Google Scholar 

  75. Tung FF, Estafan D, Scherer W: The antimicrobial properties of a urea-based handwash lotion with triclosan. Gen Dent 49: 653-656, 2001

    Google Scholar 

  76. Loughlin MF, Jones MV, Lambert PA: Pseudomonas aeruginosa cells adapted to benzalkonium chloride show resistance to other membrane-active agents but not to clinically relevant antibiotics. J Antimicrob Chemother 49: 631-639, 2002

    Google Scholar 

  77. Vermeiren L, Devlieghere F, Debevere J: Effectiveness of some recent antimicrobial packaging concepts. Food Addit Contam 19(suppl): 163-171, 2002

    Google Scholar 

  78. Moss T, Howes D, Williams FM: Percutaneous penetration and dermal metabolism of triclosan (2,4, 4′-trichloro-2′-hydroxydiphenyl ether). Food Chem Toxicol 38: 361-370, 2000

    Google Scholar 

  79. Chedgzoy P, Winckle G, Heard CM: Triclosan: Release from transdermal adhesive formulations and in vitro permeation across human epidermal membranes. Int J Pharm 235: 229-236, 2002

    Google Scholar 

  80. Bagley DM, Lin YJ: Clinical evidence for the lack of triclosan accumulation from daily use in dentifrices. Am J Dent 13: 148-152, 2000

    Google Scholar 

  81. Lin YJ: Buccal absorption of triclosan following topical mouthrinse application. Am J Dent 13: 215-217, 2000

    Google Scholar 

  82. Piccoli A, Fiori J, Andrisano V, Orioli M: Determination of triclosan in personal health care products by liquid chromatography (HPLC). Farmaco 57: 369-372, 2002

    Google Scholar 

  83. Hovander L, Malmberg T, Athanasiadou M, Athanassiadis I, Rahm S, Bergman A, Wehler EK: Identification of hydroxylated PCB metabolites and other phenolic halogenated pollutants in human blood plasma. Arch Environ Contam Toxicol 42: 105-117, 2002

    Google Scholar 

  84. Hernandez-Richter TM, Wichmann MW, Schrodl W, Angele MK, Heinritzi K, Schildberg FW: The acute phase response following implantation of triclosan-bonded vascular prostheses. Clin Exp Med 1: 35-41, 2001

    Google Scholar 

  85. Hernandez-Richter T, Schardey HM, Lohlein F, Heiss MM, Redondo-Muller M, Hammer C, Schildberg FW: The prevention and treatment of vascular graft infection with a triclosan (Irgasan)-bonded Dacron graft: An experimental study in the pig. Eur J Vasc Endovasc Surg 20: 413-418, 2000

    Google Scholar 

  86. Zuckerbraun HL, Babich H, May R, Sinensky MC: Triclosan: Cytotoxicity, mode of action, and induction of apoptosis in human gingival cells in vitro. Eur J Oral Sci 106: 628-636, 1998

    Google Scholar 

  87. Orvos DR, Versteeg DJ, Inauen J, Capdevielle M, Rothenstein A, Cunningham V: Aquatic toxicity of triclosan. Environ Toxicol Chem 21: 1338-1349, 2002

    Google Scholar 

  88. Messager S, Goddard PA, Dettmar PW, Maillard JY: Determination of the antibacterial efficacy of several antiseptics tested on skin by an 'ex-vivo' test. J Med Microbiol 50: 284-292, 2001

    Google Scholar 

  89. Zaugg T, Hunziker T: Germall II and triclosan. Contact Dermatitis 17: 262, 1987

    Google Scholar 

  90. Slayden RA, Lee RE, Barry CE III: Isoniazid affects multiple components of the type II fatty acid synthase system of Mycobacterium tuberculosis. Mol Microbiol 38: 514-525, 2000

    Google Scholar 

  91. Parikh SL, Xiao G, Tonge PJ: Inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid. Biochemistry 39: 7645-7650, 2000

    Google Scholar 

  92. Hovander L, Malmberg T, Athanasiadou M, Athanassiadis I, Rahm S, Bergman A, Wehler EK: Identification of hydroxylated PCB metabolites and other phenolic halogenated pollutants in human blood plasma. Arch Environ Contam Toxicol 42: 105-117, 2002

    Google Scholar 

  93. Foran CM, Bennett ER, Benson WH: Developmental evaluation of a potential non-steroidal estrogen: Triclosan. Mar Environ Res 50: 153-156, 2000

    Google Scholar 

  94. Meade MJ, Waddell RL, Callahan TM: Soil bacteria Pseudomonas putida and Alcaligenes xylosoxidans subsp. denitrificans inactivate triclosan in liquid and solid substrates. FEMS Microbiol Lett 204: 45-48, 2001

    Google Scholar 

  95. Levy SB: Active efflux, a common mechanism for biocide and antibiotic resistance. J Appl Microbiol 92(suppl): 65S-71S, 2002

    Google Scholar 

  96. Schweizer HP: Triclosan: A widely used biocide and its link to antibiotics. FEMS Microbiol Lett 202: 1-7, 2001

    Google Scholar 

  97. Poole K: Mechanisms of bacterial biocide and antibiotic resistance. J Appl Microbiol 92(suppl): 55S-64S, 2002

    Google Scholar 

  98. Chuanchuen R, Beinlich K, Hoang TT, Becher A, Karkhoff-Schweizer RR, Schweizer HP: Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: Exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob Agents Chemother 45: 428-432, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramachandra Rao, S.P., Surolia, A. & Surolia, N. Triclosan: A shot in the arm for antimalarial chemotherapy. Mol Cell Biochem 253, 55–63 (2003). https://doi.org/10.1023/A:1026049217966

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026049217966

Navigation