Skip to main content
Log in

The Populus PTD promoter imparts floral-predominant expression and enables high levels of floral-organ ablation in Populus, Nicotiana and Arabidopsis

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

We evaluated the utility of the promoter from the Populus PTD gene—homologous to the MADS box genes DEFICIENS and APETALA3—to genetically engineer reproductive sterility. Floral-predominant expression was confirmed via GUS reporter assays in two heterologous species (Arabidopsis and tobacco) and in an early-flowering poplar genotype. Using the PTD promoter to direct expression of the disarmed cytotoxin DTA resulted in sterile plants with otherwise normal growth at high frequency in all three species. Biomass production in greenhouse-grown, morphologically normal tobacco cytotoxin lines was indistinguishable from lines lacking the cytotoxin gene, confirming strong floral specificity of the promoter. These results suggest that the poplar PTD promoter may prove useful for transgene confinement without detrimental effects on yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beals T.P. and Goldberg R.B. 1997. A novel cell ablation strategy blocks tobacco anther dehiscence. Plant Cell 9: 1527–1545.

    Google Scholar 

  • Bechtold N., Ellis J. and Pelletier G. 1993. In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CR Acad. Sci. 316: 1194–1199.

    Google Scholar 

  • Day C.D., Galgoci B.F.C. and Irish V.F. 1995. Genetic ablation of petal and stamen primordial to elucidate interactions during floral development. Development 121: 2887–2895.

    Google Scholar 

  • Ellstrand N.C. 2001. When transgenes wander, should we worry? Plant Physiol. 125: 1543–1545.

    Google Scholar 

  • Hackett R.M., Lawrence M.J. and Franklin C.H. 1992. A Brassica S-locus related gene promoter directs expression in both pollen and pistil of tobacco. Plant J. 2: 613–617.

    Google Scholar 

  • Han K.-H., Ma C. and Strauss S.H. 1997. Matrix attachment regions (MARs) enhance transformation frequency and transgene expression in poplar. Transgenic Res. 6: 415–420.

    Google Scholar 

  • Han K.-H., Meilan R., Ma C. and Strauss S.H. 2000. An Agrobacterium transformation protocol effective in a variety of cottonwood hybrids (genus Populus). Plant Cell Reports 19: 315–320.

    Google Scholar 

  • Hartley R.W. 1988. Barnase and barstar: Expression of its cloned inhibitor permits expression of a cloned ribonuclease. J. Mol. Biol. 202: 913–915.

    Google Scholar 

  • Hill T.A., Day C.D., Zondlo S.C., Thackeray A.G. and Irish V.F. 1998. Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development 125: 1711–1721.

    Google Scholar 

  • Jack T., Brockman L.L. and Meyerowitz E.M. 1992. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683–697.

    Google Scholar 

  • Jefferson R.A., Kavanagh T.A. and Bevan M.W. 1987. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907.

    Google Scholar 

  • Koltunow A.M., Truettner J., Cox K.H., Wallroth M. and Goldberg R.B. 1990. Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2: 1201–1224.

    Google Scholar 

  • Kuvshinov V., Koivu K., Kanerva A. and Pehu E. 2001. Molecular control of transgene escape from genetically modified plants. Plant Sci. 160: 517–522.

    Google Scholar 

  • Meilan R., Brunner A., Skinner J. and Strauss S. 2001. Modification of flowering in transgenic trees. In: Komamine A. and Morohoshi N. (eds), Molecular Breeding of Woody Plants. Elsevier Science BV, Amsterdam, pp. 247–256.

    Google Scholar 

  • Meilan R., Han K.-H., Ma C., DiFazio S.P., Eaton J.A., Hoien E. et al. 2002. The CP4 transgene provides high levels of tolerance to Roundup® herbicide in field-grown hybrid poplars. Can. J. For. Res. 32: 967–976.

    Google Scholar 

  • Mikkelsen T.R., Andersen B. and Jørgensen R.B. 1996. The risk of crop transgene spread. Nature 380: 31.

    Google Scholar 

  • Nap J.-P., Mlynárová L. and Stiekma W.J. 1996. From transgene expression to public acceptance of transgenic plants: a matter of predictability. Field Crops Res. 45: 5–10.

    Google Scholar 

  • Nilsson O., Wu E., Wolfe D.S. and Weigel D. 1998. Genetic ablation of flowers in transgenic Arabidopsis. Plant J. 15: 799–804.

    Google Scholar 

  • Palmiter R.D., Behringer R.R., Quaife C.J., Maxwell F., Maxwell I.H. and Brinster R.L. 1987. Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell 50: 435–443.

    Google Scholar 

  • Rottmann W.H., Meilan R., Sheppard L.A., Brunner A.M., Skinner J.S., Ma C. et al. 2000. Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. Plant J. 22: 235–246.

    Google Scholar 

  • Sambrook J., Fritsch E.F. and Maniatis T. 1989. Molecular cloning: A laboratory manual. 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.

    Google Scholar 

  • Sandhu J.S., Webster C.I. and Gray J.C. 1998. A/T-rich sequences act as quantitative enhancers of gene expression in transgenic tobacco and potato plants. Plant Mol. Biol. 37: 885–896.

    Google Scholar 

  • Sheppard L.A., Brunner A.M., Krutovskii K.V., Rottmann W.H., Skinner J.S., Vollmer S.S. et al. 2000. A DEFICIENS homolog from the dioecious tree black cottonwood is expressed in female and male meristems of the two-whorled, unisexual flowers. Plant Physiol. 124: 627–639.

    Google Scholar 

  • Skinner J.S., Meilan R., Brunner A.M. and Strauss S.H. 2000. Options for genetic engineering of floral sterility in forest trees. In: Jain S.M. and Minocha S.C. (eds), Molecular Biology of Woody Plants. Vol. 1. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 135–153.

    Google Scholar 

  • Smyth D.R., Bowman J.L. and Meyerowitz E.M. 1990. Early flower development in Arabidopsis. Plant Cell 2: 755–767.

    Google Scholar 

  • Stomp A.-M. 1992. Histochemical localization of β-glucuronidase. In: Gallagher S.R. (ed.), GUS protocols: Using the GUS Gene as a Reporter of Gene Expression. Academic Press, pp. 103–113.

  • Strauss S.H., Rottmann W.H., Brunner A.M. and Sheppard L.A. 1995. Genetic engineering of sterility in forest trees. Molec. Breed. 1: 5–26.

    Google Scholar 

  • Thorsness M.K., Kandasamy M.K., Nasrallah M.E. and Nasrallah J.B. 1991. A Brassica S-locus gene promoter targets toxic gene expression and cell death to the pistil and pollen of transgenic Nicotiana. Dev. Biol. 143: 173–184.

    Google Scholar 

  • Tilley J.J., Allen D.W. and Jack T. 1998. The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development 125: 1647–1657.

    Google Scholar 

  • Tzfira T., Zuker A. and Altman A. 1998. Forest-tree biotechnology: genetic transformation and its application to future forests. TIBTECH 16: 439–446.

    Google Scholar 

  • Vancanneyt G., Schmidt R., O'Connor-Sanchez A., Willmitzer L. and Rocha-Sosa M. 1990. Construction of an intron-containing marker gene: Splicing of the intron in transgenic plants and it use in monitoring early events in Agrobacterium-mediated plant transformation. Mol. Gen. Genet. 220: 245–250.

    Google Scholar 

  • Wang H., Wu H.M. and Cheng A.Y. 1993. Development and pollination regulated accumulation and glycosylation of a stylar transmitting tissue-specific proline-rich protein. Plant Cell 5: 1639–1650.

    Google Scholar 

  • Weigel D. and Nilsson O. 1995. A developmental switch sufficient for flower initiation in diverse plants. Nature 377: 495–500.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skinner, J.S., Meilan, R., Ma, C. et al. The Populus PTD promoter imparts floral-predominant expression and enables high levels of floral-organ ablation in Populus, Nicotiana and Arabidopsis . Molecular Breeding 12, 119–132 (2003). https://doi.org/10.1023/A:1026044927910

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026044927910

Navigation