Skip to main content
Log in

A General Scheme for Shape Preserving Planar Interpolating Curves

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This paper describes the application of the so-called Abstract Schemes (AS) for the construction of shape preserving interpolating planar curves. The basic idea behind AS is given by observing that when we interpolate some data points by a spline, we can dispose of several free parameters d 0,d 1,...,d N (d i R q), which are associated with the knots. If we now express shape constraints as conditions relative to each interval between two knots, they can be rewritten as a sequences of inclusion conditions: ({d} i ,d i+1)∈D i R 2q, where the sets D i are the corresponding feasible domains. In this setting the problems of existence, construction and selection of an optimal solution can be studied with the help of Set Theory in a general way. The method is then applied for the construction of shape preserving, planar interpolating curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. Applegarth, P. D. Kaklis and S. Wahl, eds., Benchmark Tests on the Generation of Fair Shapes subject to Constraints, B. G. Teubner, Stuttgart, 2000.

    Google Scholar 

  2. S. Asaturyan, P. Costantini, and C. Manni, G2 Shape-Preserving Parametric Planar Curve Interpolation, in Designing and Creating Shape-Preserving Curves and Surfaces, H. Nowacki and P. Kaklis, eds., B. G. Teubner, Stuttgart, 1998, pp. 89-98.

    Google Scholar 

  3. S. Asaturyan, P. Costantini, and C. Manni, Shape-Preserving Interpolating Curves in R3, in Designing and Creating Shape-Preserving Curves and Surfaces, H. Nowacki and P. Kaklis, eds., B. G. Teubner, Stuttgart, 1998, pp. 99-108.

    Google Scholar 

  4. R. Bellman and S. Dreyfus, Applied Dynamic Programming, Princeton University Press, New York, 1962.

    Google Scholar 

  5. E. W. Cheney and A. Goldstein, Proximity maps for convex sets, Proc. Amer. Math. Soc., 10 (1959), pp. 448-450.

    Google Scholar 

  6. P. Costantini, On monotone and convex spline interpolation, Math. Comp., 46 (1986), pp. 203-214.

    Google Scholar 

  7. P. Costantini, An algorithm for computing shape preserving splines of arbitrary degree, J. Comput. Appl. Math., 22 (1988), pp. 89-136.

    Google Scholar 

  8. P. Costantini, A general method for constrained curves with boundary conditions, in Multivariate Approximation: from CAGD to Wavelets, K. Jettere F. I. Utreras, eds., World Scientific Publishing Co., Singapore, 1993, pp. 91-108.

    Google Scholar 

  9. P. Costantini, Abstract schemes for functional shape-preserving interpolation, in Advanced Course on FAIRSHAPE, J. Hoschek and P. Kaklis, eds., B. G. Teubner, Stuttgart, 1996, pp. 185-199.

    Google Scholar 

  10. P. Costantini, Boundary-valued shape-preserving interpolating splines, ACMTrans. Math. Software, 232 (1997), pp. 229-251.

    Google Scholar 

  11. P. Costantini, Algorithm 770: BVSPIS-A package for computing boundary-valued shape-preserving interpolating splines, ACM Trans. Math. Software, 232 (1997), pp. 252-254.

    Google Scholar 

  12. P. Costantini and F. Pelosi, Shape-preserving approximation by space curves, Numer. Algorithms, 27 (2001), pp. 237-264.

    Google Scholar 

  13. P. Costantini and M. L. Sampoli, Abstract schemes and constrained curve interpolation, in Designing and Creating Shape-Preserving Curves and Surfaces, H. Nowacki and P. Kaklis, eds., B. G. Teubner, Stuttgart, 1998, pp. 121-130.

    Google Scholar 

  14. P. Costantini and M. L. Sampoli, Constrained interpolation in R3 by abstract schemes, to appear in Curve and Surface Design: Saint-Malo 2002, T. Lyche, M.-L. Mazure and L. Schumaker, eds., Nashboro Press, Brentwood, 2003, pp. 93-102.

    Google Scholar 

  15. R. E. Carlson and F. N. Fritsch, Monotone piecewise cubic interpolation, SIAM J. Numer. Anal. 17 (1980), pp. 238-246.

    Google Scholar 

  16. T. N. T. Goodman, B. H. Ong and M. L. Sampoli, Automatic interpolation by fair, shape preserving G2 space curves, Computer Aided Design 3010 (1998), pp. 813-822.

    Google Scholar 

  17. T. N. T. Goodman and K. Unsworth, Shape preserving interpolation by parametrically defined curves, SIAM J. Numer. Anal. 25 (1988), pp. 1451-1465.

    Google Scholar 

  18. J. Hoschek and D. Lasser, Fundamentals of Computer Aided Geometric Design, AK Peters Ltd., Wellesley, 1993.

    Google Scholar 

  19. P. D. Kaklis and N. S. Sapidis, Convexity preserving polynomial splines of non uniform degree, Comput Aided Geom. Design 12 (1995), pp. 1-26.

    Google Scholar 

  20. P. D. Kaklis and M. T. Karavelas, Shape-preserving interpolation in R3, IMA J. Numer. Anal., 17 (1997), pp. 373-419.

    Google Scholar 

  21. B. Jüttler, Shape-preserving least-squares approximation by polynomial parametric spline curves, Comput. Aided Geom. Design 14 (1997), pp. 731-747.

    Google Scholar 

  22. R. Morandi, D. Scaramelli and A. Sestini, A geometric approach for knot selection in convexity-preserving spline approximation, in Curve and Surface Design, Saint Malo 1999. P. J. Laurent, P. Sablonniere, and L. L. Schumaker, eds., Vanderbilt University Press, Nashville, 2000, pp. 287-296.

    Google Scholar 

  23. B. Mulansky and J. W. Schmidt, Convex interval interpolation using three-term staircase algorithm, Numer. Math. 82 (1999), pp. 313-337.

    Google Scholar 

  24. B. Mulansky and J. W. Schmidt, Composition based staircase algorithm and constrained interpolation with boundary conditions, Numer. Math. 85 (2000), pp. 387-408.

    Google Scholar 

  25. H. Nowacki, J. Heimann, E. Melissaratos and S. H. Zimmermann, Experiences in curve fairing, in Advanced Course on FAIRSHAPE, J. Hoschek and P. Kaklis, eds., B. G. Teubner, Stuttgart, 1996, pp. 9-16.

    Google Scholar 

  26. F. P. Preparata and M. I. Shamos, Computational Geometry, Springer-Verlag, Berlin, New York, 1985.

    Google Scholar 

  27. M. L. Sampoli, Effective schemes for constrained curve construction, PhD Thesis, University of Milan, 1998.

  28. W. Heßand, J. W. Schimdt, Schwach verkoppelte Ungleichungssysteme und konvexe Spline-Interpolation, Elem. Math. 39 (1984), pp. 85-96.

    Google Scholar 

  29. J. W. Schimdt, On shape-preserving spline interpolation: Existence theorems and determination of optimal splines, in Approximation and Function Spaces, Vol. 22 PWN-Polish Scientific Publishers, Warsaw, 1989.

    Google Scholar 

  30. J. W. Schmidt, Staircase algorithm and construction of convex spline interpolants up to the continuity C 3, Comput. Math. Appl. 31 (1996), pp. 67-79.

    Google Scholar 

  31. D. G. Schweikert, An interpolation curve using a spline in tension, J.Math. Phys., 45, (1966), pp. 312-317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costantini, P., Sampoli, M.L. A General Scheme for Shape Preserving Planar Interpolating Curves. BIT Numerical Mathematics 43, 297–317 (2003). https://doi.org/10.1023/A:1026035128791

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026035128791

Navigation